Component
Faculty of Science
List of courses
Choice: 1 of 3
L1S2 SVSE Profile Series 1
30 creditsYour choice: 1 of 2
Choice HAV203V + HAV228V
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsBrain exploration
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 creditsHealth law and public health
4 credits
Choice HAV203V + HAV211V
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsBrain exploration
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 creditsDiscovering physiology
4 credits
L1S2 SVSE Profile Series 2
30 creditsYour choice: 1 of 6
Choice HAV209B + HAV212B
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsLifecycle 2
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsDiscovering naturalist activities and biodiversity
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 credits
Choice HAV209B + HAV214T
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsLifecycle 2
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 creditsEvolution of life, climate and oceans
4 credits
Choice HAV213T + HAV214T
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsEarth evolution and regional geological history
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 creditsEvolution of life, climate and oceans
4 credits
Choice HAV212B + HAV229X
30 creditsChoice HAV209B + HAV215V
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsLifecycle 2
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsIntegrated Biology of Marine Mammals
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 credits
Choice HAV219P + HAV214T
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 creditsPlanetology and exobiology
4 creditsEvolution of life, climate and oceans
4 credits
L1S2 SVSE Profile Series 3
30 creditsYour choice: 1 of 4
Choice HAV206C + HAV228V
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsChemistry for biologists 1
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 creditsHealth law and public health
4 credits
Choice HAV207V + HAV211V
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsIntroduction Study Animal Behavior Appr Neuro Ecol Etho
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 creditsDiscovering physiology
4 credits
Choice HAV207V + HAV215V
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsIntroduction Study Animal Behavior Appr Neuro Ecol Etho
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsIntegrated Biology of Marine Mammals
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 credits
Choice HAV207V + HAV212B
30 creditsBiochemistry and molecular biology of the cell 1
4 creditsIntroduction Study Animal Behavior Appr Neuro Ecol Etho
4 creditsScientific reasoning
4 creditsEnglish S2
2 creditsLifecycle 1
4 creditsOrganic chemistry
4 creditsDiscovering naturalist activities and biodiversity
4 creditsCritical thinking
2 creditsBiochemistry and molecular biology of the cell 2
2 credits
L1S2 SVSE Profile Series 1
ECTS
30 credits
Component
Faculty of Science
Choice HAV203V + HAV228V
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Brain exploration
ECTS
4 credits
Component
Faculty of Science
The brain is at the heart of human behavior. It is the body's control tower. It continuously receives a flow of information from both the external environment and the body. This information must be processed and analyzed rapidly, in order to propose an appropriate response. All these mechanisms, which at first glance appear complex, are based on simple biological mechanisms.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".
Health law and public health
Study level
BAC +1
ECTS
4 credits
Component
Faculty of Science
Teaching basic concepts of public health and health product law
Choice HAV203V + HAV211V
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Brain exploration
ECTS
4 credits
Component
Faculty of Science
The brain is at the heart of human behavior. It is the body's control tower. It continuously receives a flow of information from both the external environment and the body. This information must be processed and analyzed rapidly, in order to propose an appropriate response. All these mechanisms, which at first glance appear complex, are based on simple biological mechanisms.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".
Discovering physiology
ECTS
4 credits
Component
Faculty of Science
This optional course enables students to prepare for the animal physiology courses of the next 2 semesters, by approaching this discipline exclusively through the analysis of the historical experiments that laid the foundations for this subject. In class, historical experiments on digestion, ventilation, cardiac activity, reproduction and development are analyzed. In TD, experiments are analyzed on nutrition, metabolism, respiratory gas exchange, vessels, blood pressure, kidneys, growth, nervous and hormonal communication and immunity.
L1S2 SVSE Profile Series 2
ECTS
30 credits
Component
Faculty of Science
Choice HAV209B + HAV212B
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Lifecycle 2
ECTS
4 credits
Component
Faculty of Science
In this course, we cover each stage of the life cycle of organisms (mainly metazoans and angiosperms) through a series of practical exercises covering: embryonic development (including organ development, cell differentiation and growth processes), acquisition of reproductive capacity (including stages associated with meiosis and gametogenesis), and fertilization. This series of practical exercises is combined with a series of tutorials on the transmission of genetic information.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Discovering naturalist activities and biodiversity
ECTS
4 credits
Component
Faculty of Science
The aim of this course is to introduce first-year undergraduates to the living world through a naturalistic approach. This involves looking at the animals and plants that make up Mediterranean ecosystems through their taxonomy, ecology and biology. Students will focus on different groups of organisms, including vascular plants, birds, amphibians and reptiles, insects and bats.
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".
Choice HAV209B + HAV214T
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Lifecycle 2
ECTS
4 credits
Component
Faculty of Science
In this course, we cover each stage of the life cycle of organisms (mainly metazoans and angiosperms) through a series of practical exercises covering: embryonic development (including organ development, cell differentiation and growth processes), acquisition of reproductive capacity (including stages associated with meiosis and gametogenesis), and fertilization. This series of practical exercises is combined with a series of tutorials on the transmission of genetic information.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".
Evolution of life, climate and oceans
ECTS
4 credits
Component
Faculty of Science
This course will cover a number of disciplines, providing a basic overview of the Biosphere, Hydrosphere and Atmosphere, as well as their evolution since the planet's origin. The disciplines (and major themes) covered will be :
-Paleontology: Evolution, Biochronology and Geological Eras, Biodiversity and Past Crises.
-Climatology and Oceanology: How is climate studied? What is the role of the ocean and the terrestrial biosphere? Faced with today's global challenges, tools are being developed to better characterize the mechanisms of climate change and their impact on terrestrial and marine environments, from the past to the future, notably through the modification of biogeochemical cycles on a planetary scale. Environmental geochemistry will be a key method for characterizing both anthropogenic and natural footprints.
The main objectives are to understand how these envelopes interacted with the Geosphere in the past (covered in greater depth in the HAT102T geology course) and to be able to analyze a natural landscape today in terms of its evolution over geological time.
Choice HAV213T + HAV214T
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Earth evolution and regional geological history
ECTS
4 credits
Component
Faculty of Science
Origin and evolution of the planet ;
Geological scale and geochronology ;
Geographies, topographies and past environments ;
Biosphere/Hydrosphere/Atmosphere/Geosphere interactions,
Human evolution and anthropization ;
Natural resources (water, energy, mineral resources) and anthropization
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".
Evolution of life, climate and oceans
ECTS
4 credits
Component
Faculty of Science
This course will cover a number of disciplines, providing a basic overview of the Biosphere, Hydrosphere and Atmosphere, as well as their evolution since the planet's origin. The disciplines (and major themes) covered will be :
-Paleontology: Evolution, Biochronology and Geological Eras, Biodiversity and Past Crises.
-Climatology and Oceanology: How is climate studied? What is the role of the ocean and the terrestrial biosphere? Faced with today's global challenges, tools are being developed to better characterize the mechanisms of climate change and their impact on terrestrial and marine environments, from the past to the future, notably through the modification of biogeochemical cycles on a planetary scale. Environmental geochemistry will be a key method for characterizing both anthropogenic and natural footprints.
The main objectives are to understand how these envelopes interacted with the Geosphere in the past (covered in greater depth in the HAT102T geology course) and to be able to analyze a natural landscape today in terms of its evolution over geological time.
Choice HAV212B + HAV229X
ECTS
30 credits
Component
Faculty of Science
Choice HAV209B + HAV215V
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Lifecycle 2
ECTS
4 credits
Component
Faculty of Science
In this course, we cover each stage of the life cycle of organisms (mainly metazoans and angiosperms) through a series of practical exercises covering: embryonic development (including organ development, cell differentiation and growth processes), acquisition of reproductive capacity (including stages associated with meiosis and gametogenesis), and fertilization. This series of practical exercises is combined with a series of tutorials on the transmission of genetic information.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Integrated Biology of Marine Mammals
ECTS
4 credits
Component
Faculty of Science
Cross-disciplinary course providing general and scientific knowledge of marine mammals
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".
Choice HAV219P + HAV214T
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".
Planetology and exobiology
ECTS
4 credits
Component
Faculty of Science
Evolution of life, climate and oceans
ECTS
4 credits
Component
Faculty of Science
This course will cover a number of disciplines, providing a basic overview of the Biosphere, Hydrosphere and Atmosphere, as well as their evolution since the planet's origin. The disciplines (and major themes) covered will be :
-Paleontology: Evolution, Biochronology and Geological Eras, Biodiversity and Past Crises.
-Climatology and Oceanology: How is climate studied? What is the role of the ocean and the terrestrial biosphere? Faced with today's global challenges, tools are being developed to better characterize the mechanisms of climate change and their impact on terrestrial and marine environments, from the past to the future, notably through the modification of biogeochemical cycles on a planetary scale. Environmental geochemistry will be a key method for characterizing both anthropogenic and natural footprints.
The main objectives are to understand how these envelopes interacted with the Geosphere in the past (covered in greater depth in the HAT102T geology course) and to be able to analyze a natural landscape today in terms of its evolution over geological time.
L1S2 SVSE Profile Series 3
ECTS
30 credits
Component
Faculty of Science
Choice HAV206C + HAV228V
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Chemistry for biologists 1
ECTS
4 credits
Component
Faculty of Science
This first teaching unit is devoted to the basic concepts of chemistry, essential for understanding organic and inorganic chemistry, particularly in systems of biological interest. In advance of certain lectures and tutorials, students will work on course documents (written and audio), enabling them to take a full part in the course and understand the concepts presented, as well as the skills to be acquired. All the concepts presented in this course are essential for understanding chemistry and biology courses.
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".
Health law and public health
Study level
BAC +1
ECTS
4 credits
Component
Faculty of Science
Teaching basic concepts of public health and health product law
Choice HAV207V + HAV211V
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Introduction Study Animal Behavior Appr Neuro Ecol Etho
ECTS
4 credits
Component
Faculty of Science
This course is an introduction to the basic concepts of the various disciplines that study animal behavior: Neuroscience, Ethology, Behavioral Ecology, etc.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".
Discovering physiology
ECTS
4 credits
Component
Faculty of Science
This optional course enables students to prepare for the animal physiology courses of the next 2 semesters, by approaching this discipline exclusively through the analysis of the historical experiments that laid the foundations for this subject. In class, historical experiments on digestion, ventilation, cardiac activity, reproduction and development are analyzed. In TD, experiments are analyzed on nutrition, metabolism, respiratory gas exchange, vessels, blood pressure, kidneys, growth, nervous and hormonal communication and immunity.
Choice HAV207V + HAV215V
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Introduction Study Animal Behavior Appr Neuro Ecol Etho
ECTS
4 credits
Component
Faculty of Science
This course is an introduction to the basic concepts of the various disciplines that study animal behavior: Neuroscience, Ethology, Behavioral Ecology, etc.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Integrated Biology of Marine Mammals
ECTS
4 credits
Component
Faculty of Science
Cross-disciplinary course providing general and scientific knowledge of marine mammals
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".
Choice HAV207V + HAV212B
ECTS
30 credits
Component
Faculty of Science
Biochemistry and molecular biology of the cell 1
ECTS
4 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 1" course follows on from the S1 "From Molecules to Cells" course, which laid the structural foundations of living organisms. In this course, students will be introduced to the basics of biochemistry, replication, transcription, translation, intracellular movements and bioenergetics.
This UE will be supplemented by UE HAV204V for L1 SVSE students.
It will be followed by L1 TEE and L1 Chemistry.
Introduction Study Animal Behavior Appr Neuro Ecol Etho
ECTS
4 credits
Component
Faculty of Science
This course is an introduction to the basic concepts of the various disciplines that study animal behavior: Neuroscience, Ethology, Behavioral Ecology, etc.
Scientific reasoning
ECTS
4 credits
Component
Faculty of Science
This compulsory course is aimed at all students in the SV License. It introduces the main tools of discrete probability which are useful to the biologist in understanding random phenomena involving counting variables. The course is set at a level accessible to students with only the basics of probability calculus covered in the second year of high school. The course focuses on concrete examples, leading on to modeling.
- A preliminary section introduces the notion of sets, operations on sets and the simple formalization of propositions.
- The second part introduces the vocabulary of probability and covers elementary probability calculations (tables, trees) and conditional probabilities. The examples are based on real-life situations: calculating probabilities in a population stratified by age or gender, diagnostic tests (sensitivity/specificity), etc.
- The third part is devoted to the presentation of the main discrete law models: binomial, geometric, poisson and their applications. The notion of independent variables is presented in a heuristic way, the aim being to provide tools for calculating the expectation and variance of the sum of random variables.
- A few numerical simulations can be presented to illustrate the notion of fluctuation of a random variable or the convergence of the binomial distribution to the normal distribution or the poisson distribution.
Lifecycle 1
ECTS
4 credits
Component
Faculty of Science
In the lectures of this course, we describe each stage of the life cycle, starting with embryonic development (including organ development, cell differentiation and growth processes), through the acquisition of reproductive capacity (including the stages associated with meiosis and gametogenesis), and ending with fertilization. This life cycle is covered in detail in metazoans and angiosperms, and will consolidate your knowledge of the transmission of genetic information. This will enable us to solve problems in Mendelian genetics, including sex and epistasis effects, during the tutorials in this course.
Organic chemistry
ECTS
4 credits
Component
Faculty of Science
Organic chemistry is a branch of chemistry that deals with the study of the structure, properties, composition, reactions and synthesis of natural or synthetic organic compounds which, by definition, contain carbon. This course provides an introduction to organic chemistry and lays the foundations for the basic concepts required by students pursuing scientific courses, particularly in chemistry, biology, biochemistry and health studies.
Discovering naturalist activities and biodiversity
ECTS
4 credits
Component
Faculty of Science
The aim of this course is to introduce first-year undergraduates to the living world through a naturalistic approach. This involves looking at the animals and plants that make up Mediterranean ecosystems through their taxonomy, ecology and biology. Students will focus on different groups of organisms, including vascular plants, birds, amphibians and reptiles, insects and bats.
Critical thinking
ECTS
2 credits
Component
Faculty of Science
This course, compulsory for all L1 students, will introduce the basics of epistemology and the scientific approach, as well as the tools needed to analyze controversies surrounding the sciences and alternative modalities. The scientific investigation of so-called paranormal phenomena, pseudoscience, pseudo-medicine, psychological aberrations, sectarian alienation, etc. will be covered, to make students aware of our cognitive biases and the rhetorical manipulations that can use them to convince or deceive. The ultimate aim of this course is to enable everyone to make informed choices, to research and sort information, and to protect themselves against techniques of influence and manipulation.
This course will be based on lectures and the viewing of various resources available on the Internet. You will be required to complete an entire course on Moodle and in class, which will then be assessed by MCQs.
Biochemistry and molecular biology of the cell 2
ECTS
2 credits
Component
Faculty of Science
The "Biochemistry and Molecular Biology of the Cell 2" course complements the "Biochemistry and Molecular Biology of the Cell 1" course, which takes place in parallel. In this course, students will put into practice and deepen the theoretical knowledge acquired in "Biochemistry and Molecular Biology of the Cell 1".