ECTS
60 credits
Duration
1 year
Training structure
School of Pharmacy, School of Science
Presentation
The first year of training (S1 and S2), mainly shared with the other Master's programs, allows students to acquire the fundamentals in the fields of Water Sciences. A few specialization courses are offered.
Objectives
This year's objectives are to acquire a foundation in water science and a common vocabulary for all courses in the water master's program.
Organization
Open alternately
Type of contract | Apprenticeship contract, Professional training contract |
|---|
Program
Project Management 1
2 creditsWater treatment performance and contaminants
3 creditsContaminants in the aquatic environment and sustainable development
3 creditsWater treatment and wastewater by-products sector
3 creditsBibliographic study - supervised project (mixed EU)
3 creditsWater and Public Health
Thematic English 1
2 creditsOptional EU S1
9 creditsChoose 3 out of 6
Communication techniques
2 credits
GIS practice
3 creditsEnvironmental analyses: Methodologies
3 creditsAnthropogenic disturbances and biomonitoring
3 creditsEU Optional
3 creditsChoose 1 out of 5
Thematic English 2
2 creditsM1 CES internship
6 creditsIWRM participation practices
3 creditsStatistics
3 creditsAnthropogenic disturbances and the fate of contaminants
3 creditsProfessional project - tutored project (mixed EU)
2 credits
Project Management 1
Level of education
Bachelor's degree
ECTS
2 credits
Training structure
Faculty of Science
Project management encompasses all the methods, tools, and techniques used to organize the progress of a project and achieve its objectives, from the initial idea to its completion.
A practical scenario is planned using exercises or case studies so that students acquire the right reflexes and learn how to use project management tools.
Water treatment performance and contaminants
ECTS
3 credits
Training structure
School of Pharmacy
Contaminants in the aquatic environment and sustainable development
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
Faculty of Science
Time of year
Autumn
The issue of contaminants in the aquatic environment is addressed from a multidisciplinary scientific perspective (chemistry, geochemistry, microbiology, etc.) while also addressing regulatory aspects:
-
Presentation of the main contaminants in the aquatic environment: chemical contaminants such as major elements, trace metals, organic micropollutants (pesticides, hydrocarbons, endocrine disruptors, microbiological contaminants, etc.), radioelements, and biological contaminants such as microorganisms, pathogenic bacteria, viruses, etc.
-
Focus on certain contaminants depending on aquatic environments, taking into account the hydrochemical characteristics of the water in relation to the geological and environmental contexts of hydrological and hydrogeological basins.
-
Presentation of interactions between microorganisms and organic and inorganic contaminants and their consequences on the fate of contaminants in the aquatic environment; application in bioremediation.
These lessons are illustrated through examples from current events, such as antibiotic resistance, and/or topics researched by the speakers.
Water treatment and wastewater by-products sector
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
School of Pharmacy
Present the main processes involved in treating liquid effluents and treating and managing the by-products generated. This course is based on learning about the overall environmental impact of water resource management, wastewater, and treatment by-products. The design and implementation of treatment processes are addressed through the urban and industrial water cycle.
Water treatment and sewage sludge processing sector
Training structure
School of Pharmacy
Water treatment and sewage sludge processing sector
Training structure
School of Pharmacy
Bibliographic study - supervised project (mixed EU)
ECTS
3 credits
Training structure
School of Pharmacy
Water and Public Health
Training structure
School of Pharmacy
Thematic English 1
Level of education
Bachelor's degree
ECTS
2 credits
Training structure
Faculty of Science
English tutorial course for students in the Water Sciences program who wish to achieve professional autonomy in English.
Optional EU S1
ECTS
9 credits
Training structure
School of Pharmacy
Issues, stakeholders, regulation, and challenges in water management
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
Faculty of Science
Water is at the heart of multiple and conflicting issues, visions, and interests. The articulation of these different elements raises the question of integrated water resources management (IWRM) and regulation (particularly through public policy), the balance between collective and private values, and decision-making processes concerning collective issues—in short, governance. Decentralization, water and sanitation services, basin management, the European Framework Directive, and financial circuits illustrate, in particular, different facets of governance.
Water and agriculture: scientific issues and questions
ECTS
3 credits
Training structure
Faculty of Science
Functioning of aquatic ecosystems
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
Faculty of Science
This course unit should enable students to acquire in-depth knowledge of how aquatic ecosystems function and to identify threats and vulnerabilities in the face of local pressures and climate change.
It will also enable students to 1) learn about the specific characteristics of benthic ecosystems and the ecological roles of their components, 2) acquire in-depth knowledge of how aquatic ecosystems function, 3) acquire knowledge about the impact of chemical and biological contaminants (toxic and pathogenic microalgae), climate change, and anthropization on aquatic ecosystems and their functioning, including socio-economic repercussions. This EU will develop marine environment and marine animal health monitoring networks by addressing mortality issues.
Water cycle and watershed
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
Faculty of Science
Time of year
Autumn
The content of the EU is organized into three parts:
1) Water cycle and water balance
• Main reservoirs
• Mechanisms of the water cycle
• Water circulation: from the global scale to the watershed scale
• Humans: their influence on the water cycle
2) The atmospheric phase of the water cycle – Hydrology
• The watershed
• Atmospheric circulation and precipitation
• Evapotranspiration
• Infiltration
• Runoff
3) The underground phase of the water cycle – Hydrogeology
• Porous media and their hydrodynamic properties
• Different types of aquifers
• Piezometric levels and maps
Ocean, Atmosphere, Climate
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
Faculty of Science
Time of year
Autumn
The "Ocean, Atmosphere, Climate" module presents the fundamental principles of atmospheric dynamics and ocean dynamics, and provides a critical and well-documented perspective on climate change. The course is based on the analysis of official documents describing global change, documented lessons on key issues, and applications to case studies in different global contexts.
How hydrosystems work
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
Faculty of Science
This course is divided into two parts, one covering surface water and atmospheric water, and the other covering groundwater. This course builds on the Water Cycle course from Semester 1 and lays the essential foundations for the specific courses on hydrodynamics and physical hydrology that will be taught in Semester 2. It is therefore a transitional course between fundamental knowledge of the water cycle and specific knowledge of the study and characterization of surface and groundwater resources.
Theoretical courses combined with integrated tutorials are supplemented by practical work in the classroom on computers and hydrogeological maps.
Communication techniques
Level of education
Bachelor's degree
ECTS
2 credits
Training structure
Faculty of Science
This course focuses on mastering communication tools for the workplace, i.e. learning: -(i) how to write a resume, cover letter, and email for an unsolicited application; -(ii) how to introduce yourself in a very short time, either orally or in writing; -(iii) how to answer interview questions and avoid pitfalls.
Learning these tools involves a theoretical presentation of the tools, but also very quickly putting them into practice. To do this, students will work in small groups, simulating realistic situations such as job interviews and presentations. The aim is to learn how to master these different tools as effectively as possible.
All teaching is carried out in the form of practical work, with particular emphasis on:
- in "reality show" sessions, where each person will have to introduce themselves to the other in less than 3 minutes, be put in job interview situations, or make spontaneous applications/presentations.
- On workshops for writing emails, cover letters, and resumes.
GIS practice
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
Faculty of Science
The GIS Practice course consists of training in the use of Geographic Information Systems, incorporating basic concepts relating to geographic information and proficiency in the free software QGIS. Most of the course is devoted to an introduction through a combination of lectures and practical exercises. A personalized summary mapping project allows students at the end of the course to review the concepts they have learned. An introductory lecture with professionals provides perspective on the value of GIS approaches in general hydrology.
Environmental analyses: Methodologies
ECTS
3 credits
Training structure
School of Pharmacy
Anthropogenic disturbances and biomonitoring
ECTS
3 credits
Training structure
School of Pharmacy
EU Optional
ECTS
3 credits
Training structure
School of Pharmacy
Alternating M1 CES project
ECTS
2 credits
Training structure
School of Pharmacy
Water quality and microbiology
Level of education
Bachelor's degree
ECTS
2 credits
Training structure
Faculty of Science
Optimized management and protection of water resources (surface or groundwater) requires consideration of water quality. The assessment of the qualitative status of water bodies, particularly with regard to the legislative frameworks in force, is based on specific chemical and microbiological quality criteria, as well as standards adapted to the types of uses envisaged for these resources.
Remote sensing for water management
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
Faculty of Science
Time of year
Autumn
The content of the EU is divided into five sections:
- A presentation of the techniques and principles of optical, thermal, and radar remote sensing,
- A presentation of the main data sources (images, altimetry products) and a practical exercise in data retrieval.
- Acquisition through practice of preprocessing methods (geometric and radiometric corrections) for optical and radar images, frequently used in Geographic Information Systems.
- A series of lectures and practical exercises illustrating the value of different types of remote sensing data for hydrology and
- The contribution of remote sensing to answering environmental questions
Introduction to the R language
Level of education
Bachelor's degree
Training structure
Faculty of Science
This EU is sequenced according to the following activities: First steps - R environment; R structures; Inputs and outputs in R; Manipulating R structures; The basics of algorithms; Programming structures in R; Mini-project in groups on an R function to be created for an applied "Water" problem.
Objectives:
The EU's objectives are 1) to present the basics of the interpreted language of an engineering tool (environment, structures, inputs/outputs, structure manipulation, graphics, programming), 2) to provide the fundamental theoretical knowledge needed to create one's own functions and programs using practical examples in water science so that 3) students can independently continue their self-training and expertise in R.
Quantitative research methods
Level of education
Bachelor's degree
Training structure
Faculty of Science
Time of year
Spring
This course is an introduction to quantitative research methods in the social sciences.
It focuses on the use of statistics and the definition of categories to describe the social world, as well as the objectification of representations.
It offers practical experience in using questionnaires by creating a questionnaire, administering it, and analyzing the results.
Thematic English 2
Level of education
Bachelor's degree
ECTS
2 credits
Training structure
Faculty of Science
English tutorial course for students in the Water Sciences program who wish to achieve professional autonomy in English.
M1 CES internship
ECTS
6 credits
Training structure
School of Pharmacy
IWRM participation practices
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
Faculty of Science
Time of year
Spring
This module aims to give students a practical understanding of the implementation of IWRM and participation in water management through an active learning approach.
It is based on the "Cooplage" support system for the implementation of participatory approaches to water management, developed by researchers at the UMR GEAU, and the Agreenium MOOC associated with Terr'eau & co.
Students will work in small groups, bringing together students from different tracks of the Master's in Water program, on case studies drawn from the lecturers' current research projects. Learning will take place through the implementation of certain tools from the "Cooplage" system on their case studies, in particular modeling and participatory simulation in the form of role-playing. In order to anchor their work, students will be put in contact with the leaders of these case studies.
Statistics
Level of education
Bachelor's degree
ECTS
3 credits
Training structure
Faculty of Science
In water sciences, the use of probability and statistics for processing hydroclimatic or water quality data is essential. Lectures and practical tutorials will help students refresh their knowledge (high school and bachelor's degree exam questions), and then some new concepts will be introduced (in particular, tests of compliance with a law).
The course is structured around the following chapters:
- Elementary probability theory, combinatorial analysis. (lecture session no. 1, tutorial 1)
- Discrete and continuous random variables. Probability distribution and probability density function. Expectation, variance, covariance. (lecture session no. 2, TD2)
- Simple linear regression (covered in TD3)
- Multiple linear regression (covered in TD3)
- Some common probability distributions (binomial distribution, Poisson distribution, normal distribution, Gamma distribution, Gumbel distribution) and their applications (lecture 3, tutorial 4)
- Tests of belonging to a law (covered in TD5)
Anthropogenic disturbances and the fate of contaminants
ECTS
3 credits
Training structure
School of Pharmacy
Professional project - tutored project (mixed EU)
ECTS
2 credits
Training structure
School of Pharmacy
Admission
Target audience
The Contaminants Eau Santé course is open:
- to students with a bachelor's degree or equivalent in biology, microbiology, chemistry, or environmental studies, or who can demonstrate skills compatible with the disciplinary fields covered by the course,
- to employees in continuing education after validation of prior learning.