ECTS
60 credits
Duration
1 year
Training structure
Faculty of Pharmacy
Language(s) of instruction
English
Presentation
Master 1 - IDIL Chemistry for healthcare, protection and nutrition applications
Program
Choice of 3 to 5 from 32
Thermodynamics and phase equilibria
2 creditsBiopolymers and degradable polymers for sustainable development
2 credits20hChemobiology
2 creditsInfluence of processing properties
2 creditsPeptides and proteins
2 creditsDrug design: case studies
2 creditsTissue engineering and cell therapy
Agrochemicals, crop protection
Durability-aging of materials
3 credits20hTransport phenomena
2 creditsPolymers for health
2 creditsDeveloping materials for healthcare
2 creditsInternational drug registration
(Nano)inorganic materials for health
2 creditsModelling and numerical simulations
2 creditsNanotechnologies for health (UE PHARMACIE)
2 creditsMolecular materials
Structure-based drug design
2 creditsStereoselective synthesis
Membrane material design
2 creditsScreening
2 creditsImmunotargeting
2 creditsStereoselective synthesis
Membrane technology applications
2 creditsOmics
2 creditsFormulation of biomedicines and biomaterials (UE PHARMACIE)
Therapeutic peptides § Peptidomimetics
Targeted therapies
2 creditsCoordination and organic chemistry
2 creditsLife cycle assessment - Eco design
2 creditsProdrugs/bioprecursors
2 creditsNanotechnologies and multifunctional systems for therapy
Internship
30 creditsM1 IDIL internship
30 credits
Thermodynamics and phase equilibria
Study level
BAC +4
ECTS
2 credits
Component
Faculty of Science
- Thermodynamics of single-component systems.
- Basic thermodynamics of multicomponent systems. Chemical potential, Gibbs-Duhem relationship, variance.
- Thermal analysis techniques used to construct binary/ternary diagrams: ATG, ATD and DSC
- Construction and interpretation of binary phase diagrams based on thermodynamic quantities. Diagrams of Gibbs free enthalpy, pressure and temperature as a function of binary mixture composition. Liquid-liquid, liquid-vapor, solid-liquid mixtures.
- Phase transformation: first- and second-order transitions, critical points. Examples.
- The supercritical state: definition, thermodynamic properties, wide-ranging industrial applications.
- Construction and interpretation of ternary phase diagrams: variance, definitions of ternary eutectic, first- and second-order peritectic, isothermal section, study of alloy cooling.
Hourly volumes* :
CM :13
TD:7
Biopolymers and degradable polymers for sustainable development
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
Hourly volume
20h
The substitution of petroleum-based materials is an increasingly important issue, both technologically and economically. This module provides skills in agropolymers, biobased polymers, degradable materials and biocomposites. New, more environmentally-friendly synthesis routes will be presented, enabling the preparation of synthetic degradable polymers.
The degradation, biodegradation and recyclability of polymers will also be discussed.
Hourly volumes* :
CM: 11CM
TD : 9 TD
Influence of processing properties
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
The development of materials involves numerous coupled phenomena, some of which are linked to the nature of the materials and their intrinsic properties, others to the processes involved in the transformation of matter and/or energy. Morphogenesis is therefore the result of interdependent, coupled mechanisms whose relative kinetics will lead to one structure or another. Mastering and controlling these coupled mechanisms requires a good understanding of the transformation dynamics of the materials themselves, as well as a precise description of the transfer and transport phenomena involved in the process. Integration into the reactive environment will be covered at the end of the course.
Hourly volumes* :
CM: 11
TD : 9
Peptides and proteins
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
Peptides and proteins are made up of a sequence of amino acid residues, giving them specific properties. Their functionality depends on their sequence and thus on the chemical functions they carry, and is also greatly modulated by their structure. In addition to conventional peptide synthesis, advanced functional modification options, structures and properties that can significantly modify or enhance the properties of the resulting peptide will be developed. Significant biotechnological developments in both the chemical and biological fields will be discussed, leading to a wide range of applications in which peptides and proteins are successfully used.
Hourly volumes*:
CM :15
TD :5
Drug design: case studies
ECTS
2 credits
Component
Faculty of Pharmacy
Tissue engineering and cell therapy
Component
Faculty of Pharmacy
Durability-aging of materials
Study level
BAC +5
ECTS
3 credits
Component
Faculty of Science
Hourly volume
20h
One of the major problems linked to the use of various materials in our daily lives is their durability and therefore their degradation. In this course, we'll look at the issues surrounding the durability of materials (resources, reserves, criticality of materials, etc.) as well as the methodologies for studying durability (types of surface/volume aging, temporal extrapolation, multi-scale, combination of effects, experimental representation and industrial validation). This will then enable aging kinetics to be modeled using different models.
The different types of degradation affecting polymers will then be analyzed.
Finally, the ageing of different types of materials will be illustrated by various concrete case studies (concrete, ceramics, metals and elastomers).
Timetable*: 11h CM :
9h TD
Polymers for health
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
Knowledge of the main polymer families used in the biomedical field.
1) Specificity of polymers for biomedical applications and the main polymer families used
2) Description of application families
3) Discussion of the concept of synthesis and the relationship between structure/properties and specifications
Hourly volumes* :
CM: 15 H
TD: 5 H
Developing materials for healthcare
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
This teaching unit is dedicated to the presentation of materials and nanomaterials intended for use in the biomedical field (imaging, therapy, implants, etc.). The aim is to give a representative picture of healthcare issues, where materials and nanomaterials play an indispensable role in diagnosis, therapy and well-being. Strategies for developing the materials and nanomaterials of the future will also be discussed.
The prerequisites for the development of health-related materials and their behavior/interaction with a living organism will be explained. Examples of inorganic (inorganic nanoparticles, various materials for implants...), organic (polymers, liposomes, etc.) and biologically derived materials and nanomaterials used as contrast agents for various types of imaging, as therapeutic agents, or as implants will be presented.
The course includes both lectures and tutorials.
Hourly volumes* :
CM: 11
TD : 9
(Nano)inorganic materials for health
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
This teaching unit is dedicated to the presentation of inorganic materials and nanomaterials for use in the biomedical field (imaging, therapy, implants). It builds on the knowledge acquired in UE HAC930C (Development of materials for health). The aim is to develop health issues and inorganic materials and nanomaterials in diagnostics, therapy and wellness. Strategies for developing the inorganic materials and nanomaterials of the future based on therapeutics and multifunctionality, and intelligent materials will also be addressed.
The course comprises lectures and tutorials. A group project on the (theoretical) study of an inorganic material or nanomaterials for health will be proposed to students.
Hourly volumes* :
CM: 11
TD : 9
Modelling and numerical simulations
ECTS
2 credits
Component
Faculty of Science
Nanotechnologies for health (UE PHARMACIE)
ECTS
2 credits
Component
Faculty of Pharmacy
Structure-based drug design
ECTS
2 credits
Component
Faculty of Pharmacy
Membrane material design
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
Membrane materials are usually divided into two families: polymeric membranes and inorganic (or ceramic) membranes. Each of these families will make up a part of this course. The first part will be devoted to the design of polymer membranes. In this section, we will focus mainly on phase inversion preparation techniques (NIPS, VIPS, TIPS), with a focus on research and innovation (SNIPS, aquaporin, etc.). Additives (especially pore-forming and hydrophilizing agents), which play an important role in phase inversion approaches, will also be described, as well as the various routes for chemical modification of post-synthesis membranes. The second part will focus on the design of inorganic membranes. In this part, we will present both wet processes, i.e. the main methods of liquid film deposition (dip-coating, spin-coating, sputtering, tape-casting, silk-screen printing) and deposition from solutions (electrolytic or chemical processes) or suspensions (electrophoresis, Langmuir-Blodgett), and dry processes (PVD techniques (evap. and spray), CVD techniques (thermal, PECVD and ALD), MBE, surface treatment). Finally, as an illustration of the two membrane families, we will discuss case studies of membrane applications, notably in the packaging field.
Hourly volumes* :
CM : 11h
TD: 9h
Screening
ECTS
2 credits
Component
Faculty of Science
Understanding of screening techniques for bioactive molecules, and more generally in vitro tests used to measure a biological event in the perspective of drug discovery or diagnosis.
1) Pharmacological and biophysical fundamentals describing a biological event, target of biological tests:
2) Biological tests for the development of medicines or diagnostics
3) Applications, case studies, critical analyses.
Hourly volumes* :
CM: 15 H
TD: 5 H
Membrane technology applications
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
This course covers the main conventional membrane technologies for liquid and gas media. With regard to liquid media, baromembrane technologies such as microfiltration, ultrafiltration, nanofiltration and reverse osmosis will be described, as well as technologies based on electrochemical potential gradients (electrodeionization) or temperature gradients (membrane distillation). Gas permeation and pervaporation for gas and/or vapor separation will also be presented. For all technologies, the question of the choice of suitable membrane materials will be addressed, and representative examples of appropriate fields of use (in line with current environmental and energy issues) will be given.
Hourly volumes* :
CM : 11h
TD: 9h
Formulation of biomedicines and biomaterials (UE PHARMACIE)
Component
Faculty of Pharmacy
Therapeutic peptides § Peptidomimetics
Component
Faculty of Pharmacy
Coordination and organic chemistry
Study level
BAC +4
ECTS
2 credits
Component
Faculty of Science
This teaching unit is dedicated to deepening the foundations of organic chemistry and coordination chemistry covered in L3, and acquiring notions linked to molecular engineering and molecular chemistry. The course comprises lectures and tutorials. Students will work in advance of certain lectures and tutorials, with course documents provided, to ensure that the lectures and tutorials enable them to play a full part in the course, understand the concepts presented and the skills to be acquired. A progression program and activities will be proposed. For students who have not seen the basics of coordination chemistry and organic chemistry, documents will be made available.
Coordination chemistry: The course will cover various aspects of transition metal and lanthanide complexes, molecular materials (polynuclear complexes and coordination polymers with extended structures (MOFs, etc.)), their properties and applications. Structural aspects, bonding description, properties, as well as stability and reactivity aspects will be covered. Emphasis will be placed on the complexation effect and stability of metal, lanthanide and actinide complexes with certain ligands, with a view to applications in the biomedical field (imaging and therapy), decontamination (nuclear field), etc. The electronic (relaxivity, magnetism) and optical (absorption, luminescence) properties of these complexes will be discussed and put into the context of applications in various fields, such as imaging, electronics, sensors, etc.
Organic Chemistry: This course builds on the knowledge acquired in the Bachelor's degree, and will involve a reasoned study of the main reaction mechanisms in organic chemistry, providing a common foundation for all students in the Chemistry Master's program. The main processes (substitution, addition, elimination, transposition...) and their essential characteristics and applications to mechanistic sequences will be examined. The course is designed to provide students with general tools for analyzing mechanisms (ionic, radical, concerted) in order to grasp their variety.
Hourly volumes* :
CM: 13 H
TD: 7 H
Life cycle assessment - Eco design
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
Today, it is essential to design products that respect the environment throughout their entire life cycle. It is widely recognized that, as a product progresses through the various stages of production, the technical choices available become narrower, and the opportunities for reducing environmental impact are correspondingly reduced. So it's right from the start, at the product design stage, that the environment must be taken into account.
The method is based on a product life cycle analysis. It takes into account factors such as :
- Choice of materials and raw materials
- The technologies used to manufacture, use and maintain the product, and to dispose of it as waste.
- The product's lifespan and the possibility of recovering materials at end-of-life (recycling, etc.).
- User behavior analysis.
Hourly volumes* :
CM :11h
TD :9h
Prodrugs/bioprecursors
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
Knowledge of the limitations associated with the administration of an active ingredient (solubility, bioavailability, etc.).
General description of the enzymatic systems involved in the biotransformation of nutrients and exogenous compounds.
Description of the main membrane passageways and transport systems for fundamental biomolecules (sugars, amino acids, nucleosides, etc.).
Examples of prodrug and bioprecursor design.
Hourly volumes* :
CM: 15 H
TD: 5 H
Nanotechnologies and multifunctional systems for therapy
Component
Faculty of Pharmacy
Admission
How to register
To begin with, please contact the person in charge of the Master's program you are interested in, to find out about the level expected and the type of teaching on offer.
French & European students :
- For M1, follow the "My Master" procedure on the website: https: //www.monmaster.gouv.fr/
International students from outside the EU: follow the "Études en France" procedure: https: //pastel.diplomatie.gouv.fr/etudesenfrance/dyn/public/authentification/login.html