ECTS
30 credits
Component
Faculty of Science
List of courses
Diversity and evolution of past and present metazoans N2
4 creditsIntroduction to evolution
2 creditsFrom genotype to phenotype
4 creditsFunctional ecology
4 creditsHazard quantification
4 creditsPersonal and Professional Project
2 creditsCHOIX2
4 creditsYour choice: 1 of 7
Earth materials
4 creditsHistory of plants and natural environments
4 creditsEcophysiology of Aquatic Organisms
4 creditsEukaryotes Parasites
4 creditsNaturalist Specialization 1
4 creditsBasic conservation biology and physiology
4 creditsModelling life: theory
4 credits
English S4
2 creditsPlant diversity
4 credits
Diversity and evolution of past and present metazoans N2
ECTS
4 credits
Component
Faculty of Science
This course is a continuation of the L2 S3 course, which focuses on describing the morpho-anatomical characteristics of the major organizational plans of metazoans found in present and past faunas, and on explaining their origin and the dynamics of their appearance, through the acquisition of skills in paleontology and zoology. In S4, the main focus will be on the major subdivisions within protostomian organisms such as lophotrochozoa (annelids, mollusks, brachiopods, etc.) and ecdysozoa (arthropods, nematodes, etc.), with emphasis on their phylogenetic relationships and their socio-economic importance and impact. The course is classically divided into lectures and tutorials, mainly aimed at illustrating and supporting aspects of taxon biodiversity, and practical work in sessions aimed at acquiring skills, in particular and necessarily through the performance of certain dissections.
Introduction to evolution
ECTS
2 credits
Component
Faculty of Science
The aim of this course is to understand evolutionary processes on both micro- and macro-evolutionary scales.
Using examples, manipulations and accessible modeling, the aim of the lessons is to present, in a concrete and quantitative way, the effects of the 4 evolutionary forces operating on the scale of individuals and populations (mutation, migration, selection and drift). The integration of these micro-evolutionary processes on larger time scales (e.g. differentiation between lineages, speciation) will then be addressed. Finally, the course will include an introduction to the tools of phylogeny (tree reading and construction), making it possible to study macro-evolutionary events (diversification, extinction) and trace changes in character states, notably by integrating fossil data.
From genotype to phenotype
ECTS
4 credits
Component
Faculty of Science
In this course, students will learn about the links between an individual's genetic heritage and the development of its morphology, physiology and lifestyle. The focus will be on understanding the links between the information carried by the genome and the life cycle of the organism in question, via the cellular characteristics corresponding to the expression of genetic information. These data will be placed in an evolutionary framework and will shed light on some major evolutionary transitions, particularly in metazoans.
Functional ecology
ECTS
4 credits
Component
Faculty of Science
The Functional Ecology UE aims to provide a solid grounding in the functioning of terrestrial ecosystems, and in particular the role played by living organisms in the flow of matter within them. The main processes covered are primary production, consumption and, in particular, herbivory, and the decomposition and transformation of soil organic matter. For each of these processes, particular attention is paid to (1) the link between organisms' strategies and their function in the ecosystem, and (2) basing the presentation of concepts on field findings, highlighting characteristics of organisms or the ecosystem that students may encounter on field trips.
This course fits in with the broader presentation of ecology in S1 (HLBE304) and provides the concepts required for the L3 course on community ecology.
Emphasis is placed on practical aspects, in particular through a series of group assignments, where a simple but scientifically relevant hypothesis is experimentally tested using an appropriate protocol.
Hazard quantification
ECTS
4 credits
Component
Faculty of Science
This course is a natural continuation of the "Description of variability" course presented in S3. Its aim is to provide the concepts and methods underpinning modern biostatistics, i.e. the quantification of randomness, which is an omnipresent issue in the life sciences. This course provides an introduction to inferential statistics: parametric and non-parametric tests, linear regression, analysis of variance. Particular attention will be paid to the conditions of application of these methods, as well as to the notions of type I and II errors, power, replication and confidence intervals. Each notion will be illustrated by analysis of real, diversified biological data, contributing to the biostatistical culture useful for training critical thinking with regard to scientific results. In addition to training in this reference language and the statistical tools it implements, practical work in R will enable students to understand what they have learned in class and apply the methods presented.
Personal and Professional Project
ECTS
2 credits
Component
Faculty of Science
Earth materials
ECTS
4 credits
Component
Faculty of Science
The aim of this course is to introduce the concepts and tools needed to observe and describe minerals and magmatic and metamorphic rocks, and to understand their genesis. The course begins with an introduction to the concepts of mineralogy (crystallography, crystallochemistry) and the tools needed to identify the constituent minerals of magmatic and metamorphic rocks. You will then study the structure and nature of the mantle, as well as the processes involved from magma formation to the eruption of magmatic rocks: partial melting processes, crystallization, crustal assimilation, magmatic mixing. You'll learn to distinguish the different magmatic series by their chemical composition and physical properties. The link between eruptive processes, volcanic hazards and risks will also be discussed. The third part introduces the main variables (pressure, temperature, time) and the different geodynamic contexts of metamorphism. We'll look at the different metamorphic facies, structures and textures of metamorphic rocks, and you'll learn to recognize mineral reactions and interpret them in terms of metamorphic evolution.
The coupled study of magmatic and metamorphic rocks will provide the basis for understanding issues related to the geodynamics of the inner Earth, geochemical cycles, mineral resources...
History of plants and natural environments
ECTS
4 credits
Component
Faculty of Science
This course approaches the history of plants diachronically, by studying each of the major geological periods (Paleozoic, Mesozoic, Cenozoic), and transversally, by examining in greater depth certain methods for studying paleoenvironments (macroflora, palynology, climate, geochemistry, biomechanics, etc.).
After an introductory CM, the CMs present the history of plants by major geological period (CM2-3: Paleozoic; CM4-5: Mesozoic; CM6-8: Cenozoic) and cross-cutting approaches (CM9-10: Isotope geochemistry; CM11-12: Biomechanics).
TP1, Paleozoic Macroflora (Graissessac); TP2-3, Early Pleistocene Macroflora (Bernasso); TP4, Late Pleistocene Pollen (La Gourre); TP5, Holocene Geochemistry.
Ecophysiology of Aquatic Organisms
ECTS
4 credits
Component
Faculty of Science
The aim of this course is to understand the mechanisms used by organisms to cope with the constraints of the aquatic environment. Using animal models (mollusks, crustaceans, fish) and plant models (macro- and microalgae, aquatic angiosperms), this course will cover the various dimensions of the adaptive biology of organisms, from their capacity to acclimatize and adapt to change, to their physiological limits and the optimization of phenotypic traits in response to environmental constraints. This UE aims to study :
- major concepts and approaches in ecophysiology ;
- ecophysiological responses (from gene expression to organism performance and behavior), using various aquatic ecosystems (intertidal, estuarine, polar, cavernicolous and abyssal) as examples;
- the integration of structure-function relationships in a given environmental context.
On a practical level, this course will enable students to study the functioning of organisms by means of simple physiological measurements, and to learn how to set up experiments. Presentations of scientific articles chosen by the teaching staff will complement the knowledge acquired in class.
Eukaryotes Parasites
ECTS
4 credits
Component
Faculty of Science
This course presents the biology of eukaryotic parasitic organisms, taking into account their diversity. Both unicellular and vertebrate organisms will be covered.
In addition to physiological, anatomical and morphological aspects, a great deal of attention will be devoted to describing their life cycles, which necessarily include a phase of transmission to an obligate host.
Naturalist Specialization 1
ECTS
4 credits
Component
Faculty of Science
The aim is to provide students with knowledge of the biology, ecology and evolution of the three taxonomic groups in question. In addition to species identification (which will be covered extensively), this course will cover the evolution and systematics of the taxonomic group in question, fundamental ecology (evolutionary and functional ecology), applied ecology (conservation), physiology, legislation and study and identification methods.
After a general introductory course, 2 parallel courses will be offered. One will focus on Mediterranean flora, the other on fauna (amphibians, reptiles and birds).
Flore
The French Mediterranean rim is home to more than 2/3 of the rich diversity of flora in mainland France. This course is an introduction to this exceptional diversity and its underlying mechanisms. It is designed to enable students 1. to describe a plant in such a way as to highlight the characteristics useful for identification, and 2. to use different determination tools and understand their strengths and limitations. Teaching will incorporate innovative teaching approaches, combining the use of traditional (paper flora) and digital (FloreNum, PlantNet) tools, to enable learning adapted to the student's knowledge (from beginner to enlightened amateur). Species identification will form the basis for studying their biology and ecology, as well as evolution and phylogeny. To this end, workshops will be held in parallel with the practical sessions: 1. construction of a morphological classification to be compared with classical classifications (morphological and phylogenetic), 2. introduction to species ecology through a habitat-based approach, and 3. diachronic study of developmental biology by monitoring the growth of wild species planted under controlled conditions.
Animals
The aim is for students to acquire/deepen a body of knowledge on the biology of birds, amphibians and reptiles, which are models of choice in fundamental ecology (ethology, evolutionary ecology, functional ecology), applied ecology (conservation biology) and environmental education/teaching. In addition to species identification, this line of work will address the evolution and systematics of these taxa, their physiology, and their ecological and behavioral particularities.
Each group (Fauna - Flora) will have at its disposal 12 hours of fieldwork (half of which will be common to both groups) to be carried out according to modalities to be defined (4 outings of 1/2 day, or 2 long outings of one day). Practical work can be carried out on university sites (university campus - Labex CEMEB experimental field at CEFE - Botanical Garden) that are suitable for studying different organisms.
Cross-cutting notion
The UE is organized around a notion common to both groups of practical work, which, through a reversed class, will enable us to use observed species as a starting point for identifying concepts central to conservation biology. In S4, the focus will be on distribution (chorology) and the notion of rarity at different spatial scales. These concepts will support methodological questions, notably concerning the estimation of organism abundance. To this end, at the end of the sequence, students will present a taxon of their choice, from among those proposed in the EU, which illustrates the notion of distribution.
Basic conservation biology and physiology
ECTS
4 credits
Component
Faculty of Science
The aim of this course is to link knowledge of biology and physiology with demography and population evolution. This approach aims to lay the foundations for conservation biology, by providing elements for predicting how animal and plant organisms and populations respond to ecosystem changes and sources of stress.
Teaching methods :
Tutorials in the form of presentation and discussion of scientific data or in a "reversed" form with contributions from small groups, independent group projects, analysis of concrete restoration cases;
TD1: presentation of the UE: concepts, activities, teaching methods. Establishment of the reverse TD program
TD2: Ecophysiology and environmental physiology (definitions); case studies (invasive species, reintroductions, ecological developments)
TD3: Analyses of the consequences of major pollutions (marine and terrestrial), ecological engineering, passive and active biomonitoring tools.
TD4 to 16: In "inverted" form (students in an "active" position, supplemented by the teacher), a series of interventions designed to set up
- the links between biology and life strategy on the one hand, and life-history traits on the other, taking several characteristic examples (animal and plant species, generalist/specialist species, rare species - types of rarity - or widespread or even invasive species);
- building a population's demographics
- changes in the demography of a population as a result of various disturbances, particularly long-term disturbances affecting the population's ability to evolve.
Two tutorial sessions (3h in total): analysis of different conservation and biomonitoring strategies, taking into account knowledge of organism physiology as well as ecological and behavioral particularities. Research & analysis of documents, synthesis and oral presentation of studies / debate.
Practical work: plant ecophysiological analyses, animal ecophysiological analyses using non-invasive approaches (behavior, physiological and bioenergetic analyses).
Plant diversity
ECTS
4 credits
Component
Faculty of Science
The EU covers the different groups of plants ("algae", "cryptogams", spermatophytes), specifying for each of them their position and phylogenetic nature (mono- or paraphyletic group), their origin and their morpho-anatomical, reproductive and ecological specificities.
4 CM present different plant groups: CM1, diversity of "algae"; CM2, life cycles of "algae"; CM3, "cryptogams"; CM4, Spermatophytes.
6 TDs cover cross-disciplinary concepts based on oral or written exercises: TD1, Biological cycles; TD2, Endosymbiosis; TD3, Interactions; TD4, Adaptation; TD5, Polyploidy; TD6, Phylogeny.
6 practical sessions illustrate the concepts covered in the lectures and practical sessions using living material: TP1, "algae "1 ; TP2, "algae "2 ; TP3, "bryophytes" ; TP4, "pteridophytes" ; TP5, Gymnosperms, vegetative apparatus ; TP6, Gymnosperms, reproduction.