ECTS
4 credits
Component
Faculty of Science
List of courses
Your choice: 1 of 7
Earth materials
4 creditsHistory of plants and natural environments
4 creditsEcophysiology of Aquatic Organisms
4 creditsEukaryotes Parasites
4 creditsNaturalist Specialization 1
4 creditsBasic conservation biology and physiology
4 creditsModelling life: theory
4 credits
Earth materials
ECTS
4 credits
Component
Faculty of Science
The aim of this course is to introduce the concepts and tools needed to observe and describe minerals and magmatic and metamorphic rocks, and to understand their genesis. The course begins with an introduction to the concepts of mineralogy (crystallography, crystallochemistry) and the tools needed to identify the constituent minerals of magmatic and metamorphic rocks. You will then study the structure and nature of the mantle, as well as the processes involved from magma formation to the eruption of magmatic rocks: partial melting processes, crystallization, crustal assimilation, magmatic mixing. You'll learn to distinguish the different magmatic series by their chemical composition and physical properties. The link between eruptive processes, volcanic hazards and risks will also be discussed. The third part introduces the main variables (pressure, temperature, time) and the different geodynamic contexts of metamorphism. We'll look at the different metamorphic facies, structures and textures of metamorphic rocks, and you'll learn to recognize mineral reactions and interpret them in terms of metamorphic evolution.
The coupled study of magmatic and metamorphic rocks will provide the basis for understanding issues related to the geodynamics of the inner Earth, geochemical cycles, mineral resources...
History of plants and natural environments
ECTS
4 credits
Component
Faculty of Science
This course approaches the history of plants diachronically, by studying each of the major geological periods (Paleozoic, Mesozoic, Cenozoic), and transversally, by examining in greater depth certain methods for studying paleoenvironments (macroflora, palynology, climate, geochemistry, biomechanics, etc.).
After an introductory CM, the CMs present the history of plants by major geological period (CM2-3: Paleozoic; CM4-5: Mesozoic; CM6-8: Cenozoic) and cross-cutting approaches (CM9-10: Isotope geochemistry; CM11-12: Biomechanics).
TP1, Paleozoic Macroflora (Graissessac); TP2-3, Early Pleistocene Macroflora (Bernasso); TP4, Late Pleistocene Pollen (La Gourre); TP5, Holocene Geochemistry.
Ecophysiology of Aquatic Organisms
ECTS
4 credits
Component
Faculty of Science
The aim of this course is to understand the mechanisms used by organisms to cope with the constraints of the aquatic environment. Using animal models (mollusks, crustaceans, fish) and plant models (macro- and microalgae, aquatic angiosperms), this course will cover the various dimensions of the adaptive biology of organisms, from their capacity to acclimatize and adapt to change, to their physiological limits and the optimization of phenotypic traits in response to environmental constraints. This UE aims to study :
- major concepts and approaches in ecophysiology ;
- ecophysiological responses (from gene expression to organism performance and behavior), using various aquatic ecosystems (intertidal, estuarine, polar, cavernicolous and abyssal) as examples;
- the integration of structure-function relationships in a given environmental context.
On a practical level, this course will enable students to study the functioning of organisms by means of simple physiological measurements, and to learn how to set up experiments. Presentations of scientific articles chosen by the teaching staff will complement the knowledge acquired in class.
Eukaryotes Parasites
ECTS
4 credits
Component
Faculty of Science
This course presents the biology of eukaryotic parasitic organisms, taking into account their diversity. Both unicellular and vertebrate organisms will be covered.
In addition to physiological, anatomical and morphological aspects, a great deal of attention will be devoted to describing their life cycles, which necessarily include a phase of transmission to an obligate host.
Naturalist Specialization 1
ECTS
4 credits
Component
Faculty of Science
The aim is to provide students with knowledge of the biology, ecology and evolution of the three taxonomic groups in question. In addition to species identification (which will be covered extensively), this course will cover the evolution and systematics of the taxonomic group in question, fundamental ecology (evolutionary and functional ecology), applied ecology (conservation), physiology, legislation and study and identification methods.
After a general introductory course, 2 parallel courses will be offered. One will focus on Mediterranean flora, the other on fauna (amphibians, reptiles and birds).
Flore
The French Mediterranean rim is home to more than 2/3 of the rich diversity of flora in mainland France. This course is an introduction to this exceptional diversity and its underlying mechanisms. It is designed to enable students 1. to describe a plant in such a way as to highlight the characteristics useful for identification, and 2. to use different determination tools and understand their strengths and limitations. Teaching will incorporate innovative teaching approaches, combining the use of traditional (paper flora) and digital (FloreNum, PlantNet) tools, to enable learning adapted to the student's knowledge (from beginner to enlightened amateur). Species identification will form the basis for studying their biology and ecology, as well as evolution and phylogeny. To this end, workshops will be held in parallel with the practical sessions: 1. construction of a morphological classification to be compared with classical classifications (morphological and phylogenetic), 2. introduction to species ecology through a habitat-based approach, and 3. diachronic study of developmental biology by monitoring the growth of wild species planted under controlled conditions.
Animals
The aim is for students to acquire/deepen a body of knowledge on the biology of birds, amphibians and reptiles, which are models of choice in fundamental ecology (ethology, evolutionary ecology, functional ecology), applied ecology (conservation biology) and environmental education/teaching. In addition to species identification, this line of work will address the evolution and systematics of these taxa, their physiology, and their ecological and behavioral particularities.
Each group (Fauna - Flora) will have at its disposal 12 hours of fieldwork (half of which will be common to both groups) to be carried out according to modalities to be defined (4 outings of 1/2 day, or 2 long outings of one day). Practical work can be carried out on university sites (university campus - Labex CEMEB experimental field at CEFE - Botanical Garden) that are suitable for studying different organisms.
Cross-cutting notion
The UE is organized around a notion common to both groups of practical work, which, through a reversed class, will enable us to use observed species as a starting point for identifying concepts central to conservation biology. In S4, the focus will be on distribution (chorology) and the notion of rarity at different spatial scales. These concepts will support methodological questions, notably concerning the estimation of organism abundance. To this end, at the end of the sequence, students will present a taxon of their choice, from among those proposed in the EU, which illustrates the notion of distribution.
Basic conservation biology and physiology
ECTS
4 credits
Component
Faculty of Science
The aim of this course is to link knowledge of biology and physiology with demography and population evolution. This approach aims to lay the foundations for conservation biology, by providing elements for predicting how animal and plant organisms and populations respond to ecosystem changes and sources of stress.
Teaching methods :
Tutorials in the form of presentation and discussion of scientific data or in a "reversed" form with contributions from small groups, independent group projects, analysis of concrete restoration cases;
TD1: presentation of the UE: concepts, activities, teaching methods. Establishment of the reverse TD program
TD2: Ecophysiology and environmental physiology (definitions); case studies (invasive species, reintroductions, ecological developments)
TD3: Analyses of the consequences of major pollutions (marine and terrestrial), ecological engineering, passive and active biomonitoring tools.
TD4 to 16: In "inverted" form (students in an "active" position, supplemented by the teacher), a series of interventions designed to set up
- the links between biology and life strategy on the one hand, and life-history traits on the other, taking several characteristic examples (animal and plant species, generalist/specialist species, rare species - types of rarity - or widespread or even invasive species);
- building a population's demographics
- changes in the demography of a population as a result of various disturbances, particularly long-term disturbances affecting the population's ability to evolve.
Two tutorial sessions (3h in total): analysis of different conservation and biomonitoring strategies, taking into account knowledge of organism physiology as well as ecological and behavioral particularities. Research & analysis of documents, synthesis and oral presentation of studies / debate.
Practical work: plant ecophysiological analyses, animal ecophysiological analyses using non-invasive approaches (behavior, physiological and bioenergetic analyses).