Training structure
Faculty of Science
Program
Biopolymers and degradable polymers for sustainable development
2 credits20hProject management - Corporate law
4 creditsPolymers for health
2 creditsDeveloping materials for healthcare
2 creditsCHOICE 2
2 creditsYour choice: 1 of 2
Structure-based drug design
2 creditsTargeted delivery
2 credits20h
(Nano)inorganic materials for health
2 creditsStructures and Health Issues
4 creditsInnovation and clinical needs
Thematic study
4 creditsMembrane material design
2 creditsCHOICE 1
2 creditsYour choice: 1 of 2
Membrane technology applications
2 creditsEnglish refresher course
2 credits
Nanotechnologies and multifunctional systems for therapy
Advanced English
2 creditsInternship
28 credits
Biopolymers and degradable polymers for sustainable development
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
Hourly volume
20h
The substitution of petroleum-based materials is an increasingly important issue, both technologically and economically. This module provides skills in agropolymers, biobased polymers, degradable materials and biocomposites. New, more environmentally-friendly synthesis routes will be presented, enabling the preparation of synthetic degradable polymers.
The degradation, biodegradation and recyclability of polymers will also be discussed.
Hourly volumes* :
CM: 11CM
TD : 9 TD
Project management - Corporate law
ECTS
4 credits
Component
Faculty of Science
Polymers for health
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
Knowledge of the main polymer families used in the biomedical field.
1) Specificity of polymers for biomedical applications and the main polymer families used
2) Description of application families
3) Discussion of the concept of synthesis and the relationship between structure/properties and specifications
Hourly volumes* :
CM: 15 H
TD: 5 H
Developing materials for healthcare
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
This teaching unit is dedicated to the presentation of materials and nanomaterials intended for use in the biomedical field (imaging, therapy, implants, etc.). The aim is to give a representative picture of healthcare issues, where materials and nanomaterials play an indispensable role in diagnosis, therapy and well-being. Strategies for developing the materials and nanomaterials of the future will also be discussed.
The prerequisites for the development of health-related materials and their behavior/interaction with a living organism will be explained. Examples of inorganic (inorganic nanoparticles, various materials for implants...), organic (polymers, liposomes, etc.) and biologically derived materials and nanomaterials used as contrast agents for various types of imaging, as therapeutic agents, or as implants will be presented.
The course includes both lectures and tutorials.
Hourly volumes* :
CM: 11
TD : 9
Structure-based drug design
ECTS
2 credits
Component
Faculty of Pharmacy
Targeted delivery
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
Hourly volume
20h
This course covers the various molecular and supramolecular tools available for the vectorization and delivery of active ingredients, depending on the type of cells or intracellular organelles targeted. Ligand-receptor interactions are covered, as are methods for preparing and activating conjugates. Examples of drugs will be presented.
Hourly volumes* :
CM: 15 H
TD: 5 H
(Nano)inorganic materials for health
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
This teaching unit is dedicated to the presentation of inorganic materials and nanomaterials for use in the biomedical field (imaging, therapy, implants). It builds on the knowledge acquired in UE HAC930C (Development of materials for health). The aim is to develop health issues and inorganic materials and nanomaterials in diagnostics, therapy and wellness. Strategies for developing the inorganic materials and nanomaterials of the future based on therapeutics and multifunctionality, and intelligent materials will also be addressed.
The course comprises lectures and tutorials. A group project on the (theoretical) study of an inorganic material or nanomaterials for health will be proposed to students.
Hourly volumes* :
CM: 11
TD : 9
Structures and Health Issues
ECTS
4 credits
Component
Faculty of Science
Innovation and clinical needs
Study level
BAC +5
Component
Faculty of Pharmacy
This teaching unit is dedicated to the acquisition of concepts related to medical devices and biomaterials. The course includes traditional lectures and tutorials, as well as interactive Learning Lab sessions on innovation in medical devices.
CM: 3 HCM
TD : 5HTD
12H CM-TD Learning Lab
Innovation and clinical needs Written
Component
Faculty of Pharmacy
Thematic study
Study level
BAC +5
ECTS
4 credits
Component
Faculty of Science
This course consists of an in-depth study of a chosen problem or topic related to materials chemistry for the three targeted orientations of the pathway: sustainable development, health and membrane engineering. This may take the form of a research, development or analysis study at laboratory or company level. Students work in small project groups. They will choose their subject, define the aim, objectives and means under the guidance of a tutor. The final aim is to develop a product/methodology using the knowledge of synthesis and analysis already acquired, in preparation for the internships that will take place in S8.
Hourly volumes* :
CM: 6h
TD : 6h
Practical work: 16h
Membrane material design
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
Membrane materials are usually divided into two families: polymeric membranes and inorganic (or ceramic) membranes. Each of these families will make up a part of this course. The first part will be devoted to the design of polymer membranes. In this section, we will focus mainly on phase inversion preparation techniques (NIPS, VIPS, TIPS), with a focus on research and innovation (SNIPS, aquaporin, etc.). Additives (especially pore-forming and hydrophilizing agents), which play an important role in phase inversion approaches, will also be described, as well as the various routes for chemical modification of post-synthesis membranes. The second part will focus on the design of inorganic membranes. In this part, we will present both wet processes, i.e. the main methods of liquid film deposition (dip-coating, spin-coating, sputtering, tape-casting, silk-screen printing) and deposition from solutions (electrolytic or chemical processes) or suspensions (electrophoresis, Langmuir-Blodgett), and dry processes (PVD techniques (evap. and spray), CVD techniques (thermal, PECVD and ALD), MBE, surface treatment). Finally, as an illustration of the two membrane families, we will discuss case studies of membrane applications, notably in the packaging field.
Hourly volumes* :
CM : 11h
TD: 9h
Membrane technology applications
Study level
BAC +5
ECTS
2 credits
Component
Faculty of Science
This course covers the main conventional membrane technologies for liquid and gas media. With regard to liquid media, baromembrane technologies such as microfiltration, ultrafiltration, nanofiltration and reverse osmosis will be described, as well as technologies based on electrochemical potential gradients (electrodeionization) or temperature gradients (membrane distillation). Gas permeation and pervaporation for gas and/or vapor separation will also be presented. For all technologies, the question of the choice of suitable membrane materials will be addressed, and representative examples of appropriate fields of use (in line with current environmental and energy issues) will be given.
Hourly volumes* :
CM : 11h
TD: 9h
English refresher course
ECTS
2 credits
Component
Faculty of Science
Nanotechnologies and multifunctional systems for therapy
Component
Faculty of Pharmacy
Internship
Study level
BAC +5
ECTS
28 credits
Component
Faculty of Science
This end-of-studies Master 2 internship is designed to place students in a pre-professional situation, in an academic research laboratory or an industrial R&D laboratory, in France or abroad.
The student will be looking for a host team in an academic environment in the institutes of the Chemistry Pole of the University of Montpellier (ICGM, IEM, IBMM...), in academic laboratories outside the University of Montpellier (in France or abroad) or in the private sector working in the materials field. The research project on which the student will be working will have been validated beforehand by the teaching team, to ensure that the internship subject is in line with the Master's courses, the skills and expertise acquired in previous semesters and the teaching units taken, particularly in semester 9, depending on the orientation chosen. The teaching team will also ensure that the internship takes place in an appropriate environment and with adequate resources.
This 5 to 6 month internship may start in mid-January after the exam session, and may not exceed 6 months in semester 10.