ECTS
7 credits
Component
Faculty of Science
List of courses
Hydrological modeling of cultivated basins
3 creditsUE ER field placement: hydrometry, hydrology, hydrochemistry
Hydrological modeling of cultivated basins
Study level
BAC +5
ECTS
3 credits
Component
Faculty of Science
The aim of this course is to provide students with a practical, high-level perspective on the hydrological modeling of watersheds dominated by agricultural activities and subject to climate change. The UE is structured around 4 points of view:
1. Watershed hydrology and its place in the history of science,
2. Specific features of agricultural landscapes and implications for modelling ,
3. Changing scales,
4. Practice and criticism of hydrological modelling.
The UE will provide advanced knowledge of production functions, transfer functions, global and distributed modeling. Students will be able to work independently with various hydrological models (Green and Ampt, reservoir, Curve Number, unit hydrograph, reservoir cascade, etc.), and to step back from the parameterization, calibration and validation of hydrological models.
UE ER field placement: hydrometry, hydrology, hydrochemistry
Study level
BAC +5
Component
Faculty of Science
The status of a watercourse as defined by the WFD comprises two aspects: chemical and ecological. To define the ecological status, several parameters need to be taken into account, including those related to the volume of water (via flow measurement) in the watercourse. In this course, students will be required to carry out field or laboratory measurements to determine some of the key parameters used to determine the state of a watercourse or, more generally, those used in hydrological studies (flooding, resource assessment, etc.).
4 aspects will be covered:
- Hydrometry, using various gauging techniques (point-by-point method with electromagnetic current meter, ADCP, dilution method, float gauging, radar).
- Soil hydrodynamics, with the use of several infiltrometry methods to determine saturation conductivity, and the sampling of soil cylinders to determine soil porosity, dry density and water content after drying.
- Hydrochemistry, with :
- a field section (sampling and analysis with a multiparameter and a field spectrophotometer) for physico-chemical parameters (temperature, electrical conductivity, pH, dissolved oxygen, TAC, PO4 and NO3, etc.)
- a laboratory part (analysis and quantification of 4-tert-octlyphenol in a surface water sample, using gas chromatography coupled with mass spectrometry (GC-MS/MS)) to determine the trace presence of emerging contaminants from the alkylphenol ethoxylate (APEO) family, compounds found in products such as detergents, emulsifiers and solubilizers.
- Hydrobiology, which takes into account the presence or absence of certain species: fish, invertebrates, macrophytes (aquatic plants) and diatoms (unicellular algae), with a view to determining specific indices (IPR, IBGN, IBMR, IBD) relating to the biological quality of the watercourse.