ECTS
4 credits
Training structure
Faculty of Science
List of courses
Choose 2 out of 3
Introduction to modeling
2 creditsHybrid and structured materials
2 creditsNanomaterials
2 credits
Introduction to modeling
Level of education
Bachelor's degree
ECTS
2 credits
Training structure
Faculty of Science
General overview of the most commonly used calculation and modeling methods in the field of solid-state chemistry according to the spatial and temporal scales that can be studied with them:
(1) Quantum calculations (Hartree Fock, Post-Hartree Fock methods, DFT),
(2) Force field-based modeling (atomistic and coarse-grained),
(3) Hybrid QMMM and AACG modeling.
Presentation of different calculation techniques: static and optimization calculations, molecular dynamics, and Monte Carlo.
The EU will offer lectures and practical classes. Two practical modeling assignments will be offered: modeling techniques in classical mechanics and quantum calculations.
CM: 11 a.m.
TD: 9 a.m.
Hybrid and structured materials
Level of education
Bachelor's degree
ECTS
2 credits
Training structure
Faculty of Science
Hybrid materials are a new family of materials combining organic ligands that connect inorganic entities, and are increasingly being studied at both a fundamental and applied level.
As part of this course unit, two main categories of hybrid materials will be covered:
- Coordination Networks and Metal-Organic Frameworks
- Organosilicon/carbon materials
CM: 10 a.m.
Tutorial: 10 a.m.
Nanomaterials
Level of education
Bachelor's degree
ECTS
2 credits
Training structure
Faculty of Science
This teaching unit is dedicated to the presentation of inorganic materials and nanomaterials intended for use in the biomedical field (imaging, therapy, implants). This teaching unit builds on the knowledge acquired in teaching unit HAC930C (Development of Materials for Health). It aims to develop health issues and inorganic materials and nanomaterials in diagnosis, therapy, and well-being. Strategies for developing the inorganic materials and nanomaterials of the future based on theranostics and multifunctionality, as well as smart materials, will also be addressed.
The EU includes lectures and tutorials. Students will be offered a group project on the (theoretical) study of inorganic materials or nanomaterials for health.
CM: 11
TD: 9