ECTS
4 credits
Component
Faculty of Science
List of courses
Choice of 2 out of 3
Introduction to modeling
2 creditsHybrid and structured materials
2 creditsNanomaterials
2 credits
Introduction to modeling
Study level
BAC +4
ECTS
2 credits
Component
Faculty of Science
General presentation of the most commonly used calculation and modelling methods in the field of solid state chemistry according to the spatial and temporal scales that can be studied with them:
(1) Quantum calculations (Hartree Fock, Post-Hartree Fock methods, DFT),
(2) Force-field modeling (atomistic and coarse-grained),
(3) Hybrid QMM and AACG modeling.
Overview of different calculation techniques: static and optimization calculations, molecular dynamics and Monte Carlo.
The UE will include lectures and practical work. Two practical modeling exercises will be offered: modeling techniques in classical mechanics and quantum calculations.
CM: 11H
TD : 9H
Hybrid and structured materials
Study level
BAC +4
ECTS
2 credits
Component
Faculty of Science
Hybrid" materials are a new family of materials, combining organic ligands with inorganic entities, and are increasingly being studied at both fundamental and application levels.
In this course, two main categories of hybrid materials will be discussed:
- Coordination Networks and Metal-Organic Frameworks
- Organosilicon/carbon materials
CM: 10 h
TD: 10 h
Nanomaterials
Study level
BAC +4
ECTS
2 credits
Component
Faculty of Science
This teaching unit is dedicated to the presentation of inorganic materials and nanomaterials for use in the biomedical field (imaging, therapy, implants). It builds on the knowledge acquired in UE HAC930C (Development of materials for health). The aim is to develop health issues and inorganic materials and nanomaterials in diagnostics, therapy and wellness. Strategies for developing the inorganic materials and nanomaterials of the future based on therapeutics and multifunctionality, and intelligent materials will also be addressed.
The course comprises lectures and tutorials. Students will be offered a group project on the (theoretical) study of an inorganic material or nanomaterials for health.
CM: 11
TD : 9