ECTS
3 credits
Component
Faculty of Science
List of courses
English S4
2 creditsBioInfo
2 creditsCellular and Molecular Biology 3
4 creditsMicrobiology 2
Introduction to evolution
2 creditsPhysiology of major functions
4 creditsPersonal and Professional Project
2 creditsMetabolic biochemistry
Genetics 1
Symbiotic and Plant Pathogen Interactions
3 credits
BioInfo
Study level
BAC +2
ECTS
2 credits
Component
Faculty of Science
1- Linux basics (1.5h CM + 3hTD) : Basic commands to navigate under Linux and understand the logic of this language. Small information extraction exercises in bash/shell. Element used to analyze alignment files.
2- Database (3h CM + 4,5hTD): knowledge of the main bibliographic and biological databases (NCBI, Ensembl, Galaxie...). Relevant and efficient queries, exploitation, sorting, description of different formats.
3- Sequence analysis (1.5hCM + 4.5H TD): Alignment and comparison of sequences with a short introduction to phylogeny (dot plot, Blast ...).
Cellular and Molecular Biology 3
Study level
BAC +2
ECTS
4 credits
Component
Faculty of Science
This compulsory UE in S4 enables students to consolidate and deepen the foundations of molecular and cell biology acquired in L1.
- Cell biology: 4 major themes will be covered: 1) Cell cytoskeleton function, 2) Cell adhesion, 3) Protein trafficking, 4) Introduction to cell cycle regulation. Cell biology methodologies will also be presented: immunoprecipitation to highlight protein interactions, fluorescence videomicroscopy to monitor cell distribution dynamics, assessment of the importance of proteins of interest in a cellular process by strategies to modulate their expression (RNA interference, overexpression).
- Molecular biology : After acquiring knowledge of transcription and translation mechanisms in Semester 3, we'll move on to the regulation of gene expression: transcriptional regulation (repressor, activator) and attenuation in prokaryotes, the basics of expression regulation mechanisms in eukaryotes.
Microbiology 2
Study level
BAC +2
Component
Faculty of Science
The aim of this course is to broaden previously acquired knowledge in various areas of microbiology, in particular microbial ecology.
She will focus on pathogenic relationships, but will also present examples of symbiotic associations. Applications of microorganisms in biotechnology will be discussed. It will describe the mode of action of antibiotics and associated resistance phenomena, as well as their impact.
This course will introduce the notion of viral ecology, presenting the place and role of viruses in ecosystems. The case of bacteriophages will be dealt with more specifically, and the mechanisms of bacterial resistance to phagic infection will be detailed. The different types of viral infection in animals will be presented (acute and persistent infections) and illustrated by studying the pathogenesis of selected viral infections.
Our knowledge of microorganisms will be extended by the study of Archaea and a model eukaryotic organism, yeast.
Practical work will focus on carrying out an antibiogram and its interpretation, and on bacteriophage titration.
Introduction to evolution
ECTS
2 credits
Component
Faculty of Science
The aim of this course is to understand evolutionary processes on both micro- and macro-evolutionary scales.
Using examples, manipulations and accessible modeling, the aim of the lessons is to present, in a concrete and quantitative way, the effects of the 4 evolutionary forces operating on the scale of individuals and populations (mutation, migration, selection and drift). The integration of these micro-evolutionary processes on larger time scales (e.g. differentiation between lineages, speciation) will then be addressed. Finally, the course will include an introduction to the tools of phylogeny (tree reading and construction), making it possible to study macro-evolutionary events (diversification, extinction) and trace changes in character states, notably by integrating fossil data.
Physiology of major functions
Study level
BAC +2
ECTS
4 credits
Component
Faculty of Science
Physiology of major functions (semester 4) aims to describe the role and interactions of the body's various systems in maintaining a constant internal environment. Acquisition of anatomical and functional knowledge of the cardiovascular, respiratory, digestive and renal systems and their nervous and hormonal controls. Understand the combined action of these major systems through examples of integrative physiology and pathologies: respiratory and cardiac insufficiency; hemorrhage; exposure to extreme environments.
Personal and Professional Project
ECTS
2 credits
Component
Faculty of Science
Metabolic biochemistry
Study level
BAC +2
Component
Faculty of Science
This compulsory UE will enable students to deepen their skills acquired in "S3 biochemistry". It will enable them to understand cellular metabolism through:
-understanding bioenergetics to study the processes by which living cells transport, transmit, use, accumulate and release energy;
-studying the catabolism and anabolism of carbohydrates, lipids, nucleotides and amino acids, and the metabolic interactions between these pathways.
- description of metabolic pathologies.
Genetics 1
Study level
BAC +2
Component
Faculty of Science
In this introductory course to genetic analysis, the objectives are to learn about the terms, principles, concepts and methods used in formal genetics, as well as their fields of application, particularly in human and medical genetics. The course covers the genetics of transmission (Mendelian or non-Mendelian), quantitative genetics and notions of population genetics. Throughout the course, close links are established between classical genetics and molecular genetics.
Symbiotic and Plant Pathogen Interactions
Study level
BAC +2
ECTS
3 credits
Component
Faculty of Science
Plants interact with a multitude of microorganisms in their environment. These microorganisms act alone or in community. They can have negative or positive effects on plants, their growth, nutrition and health. In this module, we will present the different forms that these biotic interactions can take (symbioses, parasitism-pathogenicity), using popular biological models (mycorrhizal or nitrogen-fixing symbioses, diseases caused by different microorganisms). This will also be an opportunity to present emerging concepts in the field, such as the microbiome or the holobiont.