Training structure
Faculty of Science
Program
The Master 1 program is divided into semesters 7 and 8. Semester 7 consists exclusively of courses. Semester 8 consists of a supervised research project (TER) involving the analysis of an article, and two internships in a research laboratory.
Experimental approaches in Infection Biology
5 creditsOPTION 1
10 creditsChoose 2 out of 2
Cell biology
5 creditsStructural Biology
5 credits
Molecular basis of infectious diseases
Statistics applied to biology
5 credits
Stage 1 Infection.
10 creditsImmunopathology
5 creditsTER_MSDS
5 creditsStage 2 Infection.
10 credits
Experimental approaches in Infection Biology
ECTS
5 credits
Training structure
Faculty of Science
This course aims to reinforce and illustrate the knowledge acquired in the course "Molecular Bases of Infectious Diseases" by analyzing scientific publications on infectious disease topics. Publications using a variety of molecular and cellular approaches in bacteriology, parasitology, and virology (from the most traditional to the most recent) are analyzed with students.
Cell biology
ECTS
5 credits
Training structure
Faculty of Science
The program offers refresher courses and an in-depth study of the major concepts and methodologies of cell biology, organized around different themes:
1. Cytoskeleton: Introduction to the different types of cytoskeleton. Polymerization properties of actin and tubulin. Proteins associated with the cytoskeleton and regulating polymerization. Molecular motors. Principles of cell migration.
2. Cell Adhesion & Signaling: Cell-cell and cell-extracellular matrix adhesive structures, their molecular organization and dynamics. Functions and regulation during development and pathogenesis. Regulation by signaling pathways. Mechanotransduction.
3. Cellular addressing and trafficking: Ubiquitination and proteasome. Addressing to subcellular compartments, endocytosis and secretion pathways. The molecular basis of vesicular transport, budding, fusion, molecular motors. Signaling in membrane trafficking, genetic diseases related to trafficking, and hijacking by pathogens.
4. Cell cycle: Historical introduction. Molecular regulation of the cell cycle. The mitotic spindle, dynamics of microtubules and molecular motors, chromosome attachment mechanisms, checkpoints, regulation of mitosis exit and cytokinesis. Mitotic dysregulation associated with cancer cells.
5. Stem cells: cell differentiation, totipotency, pluripotency, and multipotency; embryonic, adult, and cancer stem cells.
6. Programmed cell death: Apoptosis, autophagy, necrosis. Stages and mechanisms of apoptosis, signaling pathways involved. Role in maintaining homeostasis. Physiopathological consequences of programmed cell death dysregulation.
Various study models are presented to introduce the importance of biological diversity in the discovery of cellular and molecular mechanisms, as well as in understanding human pathologies.
The program offers a refresher of knowledge and an in-depth study of the major concepts and methodologies of cell biology, organized around different themes:
1. Cytoskeleton: Introduction to the different types of cytoskeleton. Polymerization properties of actin and tubulin. Proteins associated with the cytoskeleton and regulating polymerization. Molecular motors. Principles of cell migration.
2. Cellular Adhesion & Signaling: Cell-cell and extracellular cell-matrix adhesive structures, their molecular and dynamic organization. Functions and regulations during development and pathogenesis. Regulation by signaling channels. Mechanotransduction.
3. Addressing and cell traffic: Ubiquitination and proteasome. Addressing to subcellular compartments, endocytosis and secretion pathways. The molecular bases of vesicular transport, budding, fusion, molecular motors. Signaling in membrane trafficking, genetic diseases linked to trafficking and diversion by pathogens.
4. Cell cycle: Historical introduction. Molecular regulation of the cell cycle. The mitotic spindle, microtubule and molecular motor dynamics, chromosome attachment mechanisms, checkpoints, regulation of mitosis output and cytokinesis. Mitotic disorders associated with cancer cells.
5. Stem cells: cell differentiation, totipotency, pluripotency, and multipotency, embryonic, adult, and cancer stem cells.
6. Programmed cell death: Apoptosis, autophagy, necrosis. Stages and modalities of apoptosis, signaling pathways involved. Role in maintaining homeostasis. Physiopathological consequences of deregulation of programmed cell death.
Different study models are presented, in order to introduce the importance of the contribution of biological diversity in the discovery of cellular and molecular mechanisms, as well as in the understanding of human pathologies.
Structural Biology
ECTS
5 credits
Training structure
Faculty of Science
Molecular basis of infectious diseases
Training structure
Faculty of Science
This course consists mainly of theoretical lectures dealing with the molecular aspects of infectious diseases (bacteriology, virology, parasitology).
Bacteriology: The nature of infectious agents. Methods for studying pathogenesis (in vivo, in vitro, in silico, and post-genomic technologies) Strategies used by pathogenic bacteria to survive in organisms: Adhesion of bacteria to eukaryotic cells, antigenic variation and phase variation, invasion of non-phagocytic eukaryotic cells, mechanisms of resistance to phagocytosis, mechanisms of bacterial survival in phagocytic cells, management of membrane permeability, bacterial secretion systems (types I, II, III, IV, V, and VI), iron acquisition mechanisms, bacterial exotoxins, bacterial biofilms, examples of environmental regulation (thermoregulation, quorum sensing, etc.).
Parasitology: Cellular organization and physiology of major pathogens within parasitic unicellular eukaryotes (invasion and modification of the host cell; metabolic characteristics and therapeutic targets); Genetics and molecular biology (genome organization, antigenic variation); Pathophysiology and immune response evasion
Virology: Molecular mechanisms of the viral cycle; Expression of viral genomes; Transformation by viruses; Virus replication strategies; Plasticity of viral genomes; Structural importance of viruses in host interactions;
Statistics applied to biology
ECTS
5 credits
Training structure
School of Medicine
Time of year
Autumn
Stage 1 Infection.
ECTS
10 credits
Training structure
Faculty of Science
Immunopathology
ECTS
5 credits
Training structure
Faculty of Science
Time of year
Spring
Teaching is carried out by lecturers and researchers from the medical, science, and pharmacy departments. It consists of 42 hours of lectures and supervised work divided into seven themes (see Syllabus), including two series of article presentations: the first series on articles proposed by the lecturers for each theme covered, and the second series on articles chosen by the students. Students organize a mini-symposium at the end of the course where the articles are presented. They write summaries of these articles for the journal Medecine-Sciences.
TER_MSDS
ECTS
5 credits
Training structure
Faculty of Science
The TER aims to prepare students to organize and carry out an in-depth bibliographic analysis that will enable them to approach their internship with knowledge of the state of the art in the field, in particular in order to produce a relevant and thoughtful introduction to their experimental work.
Stage 2 Infection.
ECTS
10 credits
Training structure
Faculty of Science
Admission
Registration procedures
Applications can be submitted on the following platforms:
French & European students:
- For the M1, follow the "My Master's Degree" procedure on the website:https://www.monmaster.gouv.fr/
International students from outside the EU: follow the "Études en France" procedure:https://pastel.diplomatie.gouv.fr/etudesenfrance/dyn/public/authentification/login.html