ECTS
12 credits
Component
Faculty of Science
List of courses
Choice of: 6 of 18
Urban ecology
2 creditsSustainable use of animal resources Hunting
2 creditsTOIC/TOEFL preparation
2 creditsEcology of marine and coastal ecosystems
2 credits8hAgroecology
2 creditsBayesian approach to variability
2 creditsEcological engineering and restoration (ERC sequence)
2 creditsMethods and analysis of SHS surveys
2 creditsBehavioral ecology
2 credits6hEthnoecology and sustainable development
2 credits15hSociété Ecologie Environnement Anthropo (Pyrenees seminar)
2 creditsTools and methods for the dynamic study of marine ecosystems
2 credits3hManaging a participatory science project
2 creditsImpacts of climate change on organisms, plants and animals
2 creditsAdvanced GIS
2 creditsGE 1 Individual Project
2 creditsRole of micro-organisms in ecosystems (with BEE)
2 creditsGlobal changes: characterization, impacts & adaptations
2 credits
Urban ecology
ECTS
2 credits
Component
Faculty of Science
The expansion of the urban environment is leading to the fragmentation/destruction of natural habitats, conservation problems and a change in the relationship between man and nature. However, urban spaces can also be home to significant biodiversity in close proximity to man, which can then be used for conservation, awareness-raising, improving human well-being or even therapeutic purposes. It's a tall order to try to work in ecology while denying the existence and consequences of the urban environment and its particularities. The aim of this course is to help future ecology professionals find a compromise between urban development and respect for nature. Through courses given by a variety of professionals and a field trip to Montpellier, students will discover where (associations, consultancies, local authorities, etc.), with whom and how an ecologist can act in urban ecology.
Sustainable use of animal resources Hunting
ECTS
2 credits
Component
Faculty of Science
Ecology of marine and coastal ecosystems
ECTS
2 credits
Component
Faculty of Science
Hourly volume
8h
"I - Physical characterization and biogeochemical cycles of coastal marine ecosystems II - Biodiversity and functioning of coastal marine ecosystems III Coastal and marine law; Uses, conflicts and integrated management of the coastal zone. This course offers students a systemic approach to the study of coastal marine ecosystems from a highly multidisciplinary perspective. The physical structure of these ecosystems will be addressed through courses on their geomorphology and hydrology, with a particular focus on hydric couplings with the open sea and their watersheds. Their biogeochemistry will be addressed, in particular to describe carbon and nutrient flows through the water and sediment compartments. Several aspects of their biodiversity will be illustrated to describe the importance of these ecosystems as living environments for the species they support, and in particular the role of this biodiversity in their functioning. The coastal zone is densely populated by man (40% of the world's population). Particular attention will be paid to human uses (e.g. aquaculture) and their territorial planning, including the evaluation of their ecosystem services in an economic context, management and protection measures (e.g. Marine Protected Areas, Natura 2000), and professionals involved in the management of these environments will present practical feedback. Finally, the implications of the Law of the Sea for the management of coastal zones will be discussed. "
Bayesian approach to variability
ECTS
2 credits
Component
Faculty of Science
1. Bayesian inference: Motivation and simple example.
2. The likelihood.
3. A detour to explore priors.
4. Markov chains Monte Carlo methods (MCMC)
5. Bayesian analyses in R with the Jags software.
6. Contrast scientific hypotheses with model selection (WAIC).
7. Heterogeneity and multilevel models (aka mixed models.
Ecological engineering and restoration (ERC sequence)
ECTS
2 credits
Component
Faculty of Science
Sustainable development, ERC sequence, green, blue, turquoise grid.
The aim is to present the regulatory and technical frameworks for integrating the environment into projects, plans and programs. The Avoid, Reduce, Compensate sequence, its challenges and the players involved will be presented, discussed and illustrated. The green and blue webs and their interface with the turquoise web will be analyzed as tools for improving biodiversity preservation in land management and development operations.
Learners will be asked to take a step back from the methods and know-how used to apply the ERC sequence in various fields, linked to plans, developments and programs with an impact on the environment.
A field trip is an opportunity to meet the players and the ERC actions deployed, and to draw up a diagnosis and outlook.
Applications will focus on the "trame turquoise" linking biodiversity law and water law, and on the ERC deployment of the development file.
Last but not least, the EU offers learners a real opportunity to critically analyze their know-how and produce innovative, inclusive solutions.
Methods and analysis of SHS surveys
ECTS
2 credits
Component
Faculty of Science
Behavioral ecology
ECTS
2 credits
Component
Faculty of Science
Hourly volume
6h
Behavioral Ecology takes an evolutionary approach to the study of behavior, investigating its mechanisms, function and contribution to evolutionary and ecological processes. The work carried out in Behavioral Ecology helps us to understand other phenomena observed in other disciplines of life biology, because all animals, from unicellulars to the most complex vertebrae, exhibit behaviors.
The module exposes students to the various basic concepts, as well as to the multitude of tools likely to be used (observations and experiments on natural populations or captive individuals, comparative analyses, use of modeling tools, ecophysiology, molecular biology, biochemistry, on-board electronics, etc.). Part of the training is based on specific discussions of the research approaches likely to be employed, the tools used and the limits of the inferences that can be made. Students will be expected to play an active role at all these levels, in particular through critical discussions of articles.
Topics range from the exploration of strategies for food provisioning, mate choice, habitat selection and investment in reproduction, to the study of animal communication and the reasons for group living. The historical dimension of the discipline is addressed in the introduction, but also according to the sensibilities of the contributors and the themes addressed (meaning and relationships between 'Animal Behaviour', 'Ethology', Behavioral Ecology etc.).
Ethnoecology and sustainable development
ECTS
2 credits
Component
Faculty of Science
Hourly volume
15h
1 "The way in which the modern West represents nature is the least shared thing in the world" (Descola, 2005, p. 56). According to anthropologist Philippe Descola, the category of "Nature", as a reality separate from the human world, was invented by Europeans, and is just one of the ways in which societies can account for the living and non-living beings that surround them.
While Philippe Descola is helping to renew questions concerning the relationship between society and the environment, he is also drawing on a long tradition in the human and social sciences. Numerous works have already explored the various forms of knowledge and social organization to which these relationships give rise: ethnoscience, anthropology of technology, economic anthropology, ethnoecology, sociology of science and technology, and so on.
This issue is far from being confined to the academic sphere. It is also of interest to those involved in conservation (biodiversity, natural resources, etc.) and industry (pharmacology). It is also mobilizing so-called "indigenous" populations who are demanding, both locally and internationally, access to resources and the preservation of an intangible heritage.
2. Situated at the crossroads of social sciences and life sciences, these disciplines analyze how human societies use plants, animals and other environmental components, and how their conceptions and representations of their environment(s) shape these uses. This research also explores how human societies organize themselves, perpetuate themselves, change to adapt to new contexts (globalization, global change) and transmit knowledge about their relationships with nature.
For a long time, these disciplines focused more specifically on the interrelations between so-called "traditional" societies and their immediate environment. Then, from the 1970s onwards, researchers reconsidered the distinction between "traditional" and "modern" societies, to better address the new environmental and social transformations taking place today.
On the one hand, even the most isolated local societies are affected by events that are decided and unfolding on different scales (international conventions, economic crises). Their immediate environment is also affected by global phenomena (climate change, erosion of biodiversity, etc.). In return, their actions can also have international ecological, social and economic repercussions, when, for example, these companies organize to bring their demands to international arenas.
On the other hand, the relationship that modern societies have with their environment is being reconfigured in the face of an increasingly "artificialized" planet threatened by serious disruptions and crises. The place of flora and fauna is being reconsidered, and their rights are the subject of controversy. Moreover, the entry into a new geological era, the Anthropocene, is being used to call on both the natural sciences and the human and social sciences to take a fresh look at the shared history of the environment and society.
3. The very work of scientists and engineers is apprehended in a new light. A new scientific project in the humanities and social sciences aims to reconsider the role of "non-humans", and calls for analytical categories other than Nature and Culture. New scales and methods of investigation are also envisaged to analyze global processes.
These recent changes in scale invite researchers in the humanities and social sciences to (re)consider their approach through a reflexive lens: they are no longer mere observers, but can also be genuine actors in processes, when they are not directly involved in a social movement.
4. The aim of this module is to introduce these different scientific and operational fields. The aim is to provide students with benchmarks and food for thought, enabling them to construct scientific questions on the relationship between society and the environment, and to reflect on the ways in which current environmental and social issues can be tackled. The speakers' varied geographical and disciplinary backgrounds will illustrate the approach across a wide range of ecosystem types, socio-cultural contexts and themes. In the time available, we cannot claim to cover all the themes, approaches and methods exhaustively. Any student wishing to delve deeper into this field will need to take a more in-depth training course.
Société Ecologie Environnement Anthropo (Pyrenees seminar)
ECTS
2 credits
Component
Faculty of Science
Tools and methods for the dynamic study of marine ecosystems
ECTS
2 credits
Component
Faculty of Science
Hourly volume
3h
The module covers the identification, quantification and modeling of interactions between climate, marine species and their exploitation.
Managing a participatory science project
ECTS
2 credits
Component
Faculty of Science
Impacts of climate change on organisms, plants and animals
ECTS
2 credits
Component
Faculty of Science
The aim of this course is to deepen understanding of key concepts relating to climate change, to illustrate important concepts in ecology and evolution in the light of climate change, in many different ecosystems, and to produce a synthesis of the various scientific and societal questions and issues raised by CC.
GE 1 Individual Project
ECTS
2 credits
Component
Faculty of Science
Role of micro-organisms in ecosystems (with BEE)
ECTS
2 credits
Component
Faculty of Science
Global changes: characterization, impacts & adaptations
ECTS
2 credits
Component
Faculty of Science
Climate change, global change, outlook, adaptation, resilience, hydrology modelling, future climate simulation, water resource availability, extreme events, impacts on ecosystems, ecological issues
This course provides students with an insight into the climatic, environmental and anthropogenic changes impacting our hydro-eco-socio-systems today and in the future.
The activities focus on a number of non-exhaustive aspects of this vast and constantly evolving field.
In addition to presenting issues, figures and concepts, students learn about hydrological modeling tools that can be used to develop future scenarios for resource development. They analyze a specific subject by combining different disciplines and approaches. They discuss possible adaptations to cope with the impact of change.
The activities consist of 3 parts: The course activity, the modeling activity and the bibliography activity.
- The courses explain the principles of climate modeling, the construction of climate change scenarios and their limitations. The orders of magnitude of the main changes are outlined, as well as the major challenges of sustainable development, climate change and global change. A special focus is placed on French Mediterranean watersheds (climate change hot spots, declining availability of water resources, agricultural practices and adaptations, irrigation, tourism, etc.).
- The concepts of hydrological modeling and calibration in a non-stationary or poorly gauged context are taught, and an introduction to hydrological modeling is given with an application case. Students work with general hydrological models (such as GR, HEC-HMS or WEAP) to evaluate flows and balances, feed them with climate model outputs, generate future flow and balance scenarios, and critique the resulting scenarios. The modeling work carried out in small groups is the subject of an oral presentation.
- Finally, the bibliography compiled in class and completed independently should enable students to specialize around a concrete case study of a change occurring in a compartment of a natural or urbanized hydro-eco-system (chosen by the students). They carry out a bibliographical analysis to identify the societal or environmental issues arising from these changes, as well as the scientific questions inherent in the implementation of impact reduction or adaptation measures. They must identify how their case study is similar to others, but also how it differs from them. Finally, they open their analysis with a more general methodology, applicable to other case studies, for characterizing these changes, their impacts and adaptation measures. Learners write
an operational summary (bibliography, similar case studies, controversies, operational tools, protocols, orders of magnitude). They then pitch their findings to the class.