Study level
BAC +5
ECTS
4 credits
Training structure
Faculty of Science
Description
In this course, students will learn about the main numerical methods used in scientific software, particularly in theoretical chemistry programs.
Hourly volumes* :
CM: 21
TD : 9
Objectives
- working independently: setting priorities, managing time
- developing digital tools for chemistry
- use the Linux system
- express various numerical methods in algorithmic form
- convert an algorithm into a programming language
- know which of these methods and tools are used in other fields outside chemistry
- design and develop IT tools independently, from specifications to final tool production
Teaching hours
- Numerical methods for theoretical chemistry - CMLecture21h
- Numerical methods for theoretical chemistry - TDTutorial9h
Mandatory prerequisites
Basics of imperative and procedural programming, programming language for scientific computing (e.g. Fortran 95).
Knowledge control
Continuous assessment (3 projects).
Syllabus
- Interpolation, Extrapolation
- a) Global interpolation (Lagrange polynomials, quotient polynomials, trigonometric polynomials, etc.)
and general by an analytical function)
- b) Local interpolation (natural splines)
- c) Multidimensional interpolation (bilinear and bicubic, splines) - Integration
(quadrature, analytical, multidimensional)
- Integration and derivation of a function
- a) Simple methods
- b) Quadrature method
- c) Multidimensional integrals
- d) Digital derivation
- Linear Systems, Roots and Extrema
- a) Solving linear systems (tridiagonal matrix, LU decomposition, method
iterative Gauss-Seidel)
- b) Roots (bisection method, Newton-Raphson)
- c) Extrema (one-dimensional, Powell's method, simulated annealing, genetic algorithms)
- Diagonalization: Properties of eigenvalue equations
- a) Householder reduction
- b) Diagonalization of a tridiagonal matrix (QL algorithm, bisection)
- c) Eigenvectors by inverse iteration
- d) Lanczos method
- e) Davidson's method
- Model adjustment
- a) Least squares principle
- b) General linear method
- c) Singular value decomposition
- d) Non-linear model (Levenberg-Marquardt)
- Spectral and Pseudo-Spectral Methods
- a) Fourier transform (discrete transform, FFT)
- b) Pseudo-spectral methods
Further information
Administrative contact(s) :
Secretariat Master Chemistry
https://master-chimie.edu.umontpellier.fr/