ECTS
5 credits
Component
Faculty of Science
Description
-A general introduction to Developmental Biology
How do cells build a multicellular animal organism from a single genome? Genotype/phenotype relationship.
-Genetic analysis reminders
Nature of mutations (loss-of-function; gain-of-function), notion of "master gene", clonal analysis (generation of somatic or germinal clones), notion of cell autonomy....
-Genetic models and methods.
Study of regulatory regions, establishment of transgenic lines, enhancer trap, reporter genes (GFP, mCherry...), model organisms (drosophila, c.elegans, mouse...).Use of FLP/FRT, CRE-LOX, UAS-GAL4-GAL80, AttpP/B-PhiC31, CRISPR systems etc.
-Positional information, maternal effect genes and the establishment of asymmetry.
Models and mechanisms of positional information =induction, Spemann and Mangold experiment, organizing centers, notion of morphogen in invertebrates and vertebrates
-Establishment of axes: antero-posterior, dorso-ventral.
Cell communication and signalling pathways: in the establishment of the dorso-ventral axis, in limb formation, in the establishment of cell fate (some examples: Nervous system: lateral inhibition processes ...).
-Segmentation: gap, pair rule and segment polarity genes.
Segmentation in invertebrates and somitogenesis in vertebrates, dynamic aspects (establishment and maintenance).
-Signaling and transcriptional networks
Transcriptional regulation during development, regulatory sequences during evolution, the concept of gene networks. Transcriptional coupling and signaling pathways in cell fate
-Epigenetic memory of transcriptional programs:
Hox homeotic genes and segmental identity.Evo-Devo concepts.Polycomb and Trithorax complexes.
Involvement of epigenetic mechanisms in cell differentiation
Objectives
Animal development from gamete formation to the adult stage is under the control of a highly controlled genetic program.
The aim of this course is to present the fundamental processes governing animal development.
Teaching hours
- Developmental genetics - CMLecture42h
Necessary prerequisites
Classic genetics
Notions of genetic analysis
Molecular Biology
Cell Biology
Recommended prerequisites :
Functional genomics
Knowledge control
CT: 3h
CC: Analysis of article figures.30% of final grade. Max. rule