Component
Faculty of Pharmacy
List of courses
Cellular and Molecular Biology 2
4 creditsModeling physicochemical systems
2.5 creditsVBA programming
2 creditsMicrobiology 1
4 creditsBiochemistry S3
4 creditsChemistry for biologists 2
3 creditsImmunology-Hematology
3.5 creditsBasics of Pharmacology
1.5 creditsFundamentals of Human Physiology
2 credits
Cellular and Molecular Biology 2
Study level
BAC +2
ECTS
4 credits
Component
Faculty of Science
This compulsory UE in S3 enables students to consolidate and deepen the foundations of molecular and cell biology acquired in L1.
Molecular Biology part: The molecular and structural bases of nucleic acids will be developed and deepened to understand the physicochemical properties of nucleic acids, which open up various prospects for technological applications, and the molecular mechanisms of the main steps in Molecular Biology, such as DNA replication, transcription of genes into mRNA and translation of these into proteins. These steps, illustrated by experimental evidence deduced from various historical studies, will be studied in depth in prokaryotes. Comparisons with eukaryotes will also be discussed. The molecular mechanisms of DNA repair will also be described and developed.
Cell Biology section: This section covers the major concepts of membrane and cytosolic protein complex formation, particularly in the context of cell signaling pathways. The notions of ligands, receptors, scaffolding proteins, enzymatic signaling proteins, intracellular second messengers and response kinetics will be presented. Biochemistry and cell biology techniques for demonstrating the presence and localization of proteins in cells and tissues will be presented.
Modeling physicochemical systems
ECTS
2.5 credits
Component
Faculty of Pharmacy
Modeling physicochemical systems EC/CC
Component
Faculty of Pharmacy
Physicochemical systems modeling Written
Component
Faculty of Pharmacy
Microbiology 1
Study level
BAC +2
ECTS
4 credits
Component
Faculty of Science
This course provides a basic understanding of microbiology. It will detail the structures of microorganisms, prokaryotes and eukaryotes, and viruses. It will give an overview of the diversity of these microorganisms and describe their mode of multiplication.
For bacteria, trophic types and factors influencing growth will be developed, as well as the study of growth in a non-renewed environment. Genetics and horizontal transfer between bacteria will also be covered.
A number of eukaryotic microorganisms will be studied: habitat, lifestyle, ecological role or parasitism, as well as their mode of development.
In virology, the main multiplication cycles of viruses will be detailed, and modes of transmission and the notion of viral pathogenesis will be covered. The principles of anti-viral vaccination and anti-viral treatments will be presented and illustrated with concrete examples.
The principles of antiviral vaccination and treatment will be presented and illustrated with concrete examples.
Practical work will introduce students to techniques for sterile handling of microorganisms, bacterial counting and conjugation.
Biochemistry S3
Study level
BAC +2
ECTS
4 credits
Component
Faculty of Science
This compulsory course enables students to consolidate the foundations of biochemistry acquired in L1 by approaching this discipline through a cross-disciplinary study of enzymes involved in cellular metabolism, particularly glycolysis. Several areas of biochemistry will be covered: the basics of Michael enzymology, description of the metabolic reactions involved in glycolysis. Finally, the technical aspect will be addressed through the presentation and analysis of techniques for measuring enzymatic activity, purifying, quantifying and detecting proteins.
Chemistry for biologists 2
Study level
BAC +2
ECTS
3 credits
Component
Faculty of Science
This second unit of general chemistry is designed to consolidate and deepen the study of reactions in aqueous solution, particularly those involving the formation of metal complexes. The principles of thermodynamics will be presented and applied to the study of chemical equilibria of biological interest. Rather than a presentation using mathematical formalism, which would require a much greater time commitment, the student will be asked to understand the physical meaning of these principles and the main thermodynamic functions, and to apply them to chemical systems, often of biological interest. In particular, resting membrane potentials and the use of pH potential diagrams in biology will be presented.
In advance of certain courses and tutorials, students will work on written and audio course documents, to ensure that classroom teaching and tutorials enable them to play a full part in the training, understand the concepts presented and the skills to be acquired.
Immunology-Hematology
ECTS
3.5 credits
Component
Faculty of Pharmacy
Basics of Pharmacology
ECTS
1.5 credits
Component
Faculty of Pharmacy
Basics of Pharmacology Oral/Written
Component
Faculty of Pharmacy
Fundamentals of Human Physiology
ECTS
2 credits
Component
Faculty of Pharmacy
Fundamentals of Human Physiology Written
Component
Faculty of Pharmacy
Fundamentals of Human Physiology TP
Component
Faculty of Pharmacy